

ANL/NSE-21/43

MOOSE Framework Meshing Enhancements to

Support Reactor Analysis

Nuclear Science and Engineering Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free at OSTI.GOV

(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and

Technical Information.

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/
mailto:reports@osti.gov

ANL/NSE-21/43

MOOSE Framework Meshing Enhancements to Support Reactor

Physics Analysis

prepared by

E. Shemon, Y.S Jung, S. Kumar, Y. Miao, K. Mo, A. Oaks, and S. Richards

Argonne National Laboratory

September 15, 2021

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 i ANL/NSE-21/43

EXECUTIVE ABSTRACT

MOOSE-based physics codes require an input finite element mesh on which the physics

solution is calculated, reported, and transferred to other physics codes. The use of difficult-to-

use, external licensed software is often required to generate high quality meshes for reactor

geometries. High-fidelity geometry modeling also requires elaborate tracking of groups of

elements for material property assignment and output reporting which can be considerably

complex for the user to identify and maintain. Under the U.S. Department of Energy Office of

Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, several meshing-

related enhancements have been developed for the MOOSE framework to address user

challenges in creating finite element meshes for advanced reactor geometries.

MOOSE mesh generators have been developed to mesh hexagonal geometries (pins, ducted

assemblies, and cores) commonly found in liquid-metal cooled fast reactor concepts. The mesh

generator used for hexagonal pin cells is generic for regular polygons and therefore may also

be used for Cartesian pin cells. Hexagonal pin cells can be stitched into ducted assemblies, and

assemblies can be stitched together into a core. The user may specify region ids, region names,

and other preferences on the mesh. This control is useful for later material mapping in the

MOOSE-based physics codes input. A capability was also developed for meshing rotating

control drums including determination of material volume fractions in each mesh element as a

function of time. Control drum meshes may be stitched to other hexagonal assemblies to create

a core configuration.

Additional mesh generators were developed that wrap around the hexagonal meshing

capabilities and utilize “extra element integer” ID values on each element. In regular Cartesian

or hexagonal assemblies or cores, the bookkeeping of element groups for both material

assignment and output reporting can now be automated through assignment of pin, assembly,

core, axial and depletion id values stored as extra element integers. The extra element tags on

the mesh greatly speed the reactor analyst’s efforts to map materials to meshes, track depletion

zones, and parse output such as axial pin power distributions.

At the highest level, pin, assembly, and core mesh generators (with this reactor terminology)

have also been developed to easily generate regular Cartesian and hexagonal cores, including

axial extrusion. These reactor geometry builders call upon the previously mentioned

capabilities to produce analysis-ready 3D meshes including material assignments.

Open source mesh triangulation capabilities were also investigated for integration into the

MOOSE framework to address the need for meshing the core periphery region which extends

from the irregular outer assembly border to a cylindrical boundary. Options are limited due to

licensing constraints, and the recommendation is pursue building a native MOOSE Delaunay

triangulator routine with full functionality.

Finally, a series of verification problems were performed with NEAMS physics tools. All

developed capabilities will be available in the new open-source “Reactor” module of the

MOOSE framework, which is accessible to any MOOSE-based NEAMS physics tool.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 ii

ACKNOWLEDGEMENTS

This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and

Simulation Program (DOE-NEAMS).

The authors gratefully acknowledge the guidance provided by MOOSE (Derek Gaston, Cody

Permann), Griffin (Changho Lee, Javier Ortensi, Yaqi Wang), and Bison (Stephen Novascone,

Benjamin Spencer) development teams, as well as staff working under the NEAMS Application

Drivers Technical Area to identify priorities for nuclear reactor analysis meshing

improvements. We thank Nicholas Wozniak of Argonne National Laboratory for graciously

assisting with a MOOSE Tensor Mechanics verification problem detailed in this report.

The authors also gratefully acknowledge the computing resources provided on Bebop, a high-

performance computing cluster operated by the Laboratory Computing Resource Center at

Argonne National Laboratory.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 iii ANL/NSE-21/43

Table of Contents

REPORTS NOT IN DIGITAL FORMAT ARE AVAILABLE TO DOE AND DOE CONTRACTORS
FROM THE OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION (OSTI): 2

EXECUTIVE ABSTRACT .. I

ACKNOWLEDGEMENTS ... II

TABLE OF CONTENTS .. III

LIST OF FIGURES ... V

LIST OF TABLES .. VIII

1 INTRODUCTION ... 1

2 TASK IDENTIFICATION .. 2

3 HEXAGONAL GEOMETRY MESHING CAPABILITY ... 4

3.1 REACTOR ANALYSIS MOTIVATION .. 4
3.2 HOMOGENEOUS HEXAGONAL PIN CELLS AND ASSEMBLIES ... 5

3.2.1 SimpleHexagonGenerator .. 5
3.2.2 PolygonConcentricCircleMeshGenerator ... 5

3.3 HETEROGENEOUS HEXAGONAL PIN CELLS .. 8
3.3.1 PolygonConcentricCircleMeshGenerator ... 8
3.3.2 HexagonConcentricCircleAdaptiveBoundaryMeshGenerator .. 14
3.3.3 IDs and Names of Blocks and Boundaries .. 15

3.4 HEXAGONAL ASSEMBLIES AND CORES ... 16
3.4.1 PatternedHexMeshGenerator .. 16

3.5 CURRENT LIMITATIONS .. 20

4 CONTROL DRUM GEOMETRY MESHING CAPABILITY .. 22

4.1 REACTOR ANALYSIS MOTIVATION .. 22
4.2 STEADY STATE CONTROL DRUM POSITION ... 22

4.2.1 AzimuthalBlockIDMeshGenerator .. 22
4.3 TIME-DEPENDENT CONTROL DRUM ROTATION .. 25

4.3.1 Use of PatternedHexMeshGenerator MeshMetaData ... 25
4.3.2 MultiControlDrumFunction Rotation of Control Drums ... 26

4.4 CURRENT LIMITATIONS .. 28

5 REPORTING ID CAPABILITY .. 30

5.1 REACTOR ANALYSIS MOTIVATION .. 30
5.2 ASSIGNING PIN, ASSEMBLY AND PLANE REPORTING IDS ... 30
5.3 ASSIGNING DEPLETION IDS ... 35

6 CORE PERIPHERY MESHING CAPABILITY .. 37

6.1 REACTOR ANALYSIS MOTIVATION .. 37
6.2 TRIANGLE LICENSING COMPATIBILITY ISSUES .. 37
6.3 CORE PERIPHERY TRIANGULATION MESHER ... 38
6.4 OTHER USES OF THE TRIANGULATION MESHER ... 46
6.5 LIMITATIONS AND RECOMMENDATIONS .. 46

7 REACTOR GEOMETRY MESH BUILDER (RGMB) CAPABILITY .. 47

7.1 REACTOR ANALYSIS MOTIVATION .. 47
7.2 BUILDING A REPEATED REACTOR GEOMETRY ... 47

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 iv

7.2.1 GlobalMeshParams .. 47
7.2.2 PinMeshGenerator ... 48
7.2.3 AssemblyMeshGenerator ... 49
7.2.4 CoreMeshGenerator ... 50
7.2.5 Automatic Sideset Generation ... 50

7.3 CARTESIAN RGMB EXAMPLE .. 51
7.4 HEXAGONAL RGMB EXAMPLE .. 54
7.5 LIMITATIONS AND RECOMMENDATIONS .. 57

8 MISCELLANEOUS ENHANCEMENTS .. 58

8.1 UPDATING OF FANCYEXTRUDERGENERATOR .. 58
8.2 ELEMENT CENTROID LOCATER (2D 1ST ORDER ELEMENTS).. 58

9 PHYSICS CODE VERIFICATION OF DEVELOPED CAPABILITIES .. 60

9.1 GRIFFIN VERIFICATION: HOMOGENIZED FAST REACTOR EXAMPLE .. 60
9.1.1 ABTR Mesh Generation in New MOOSE Mesh Tools .. 61
9.1.2 Griffin Neutronics Parameters for ABTR Problem and Comparison of Neutronics Results between
New MOOSE Mesh Tools and Argonne’s Mesh Tools ... 66

9.2 GRIFFIN VERIFICATION: HETEROGENEOUS FAST REACTOR ASSEMBLY EXAMPLE .. 67
9.2.1 LFR Mesh Generation in New MOOSE Mesh Tools ... 68
9.2.2 Comparison of Griffin Neutronics Results between New MOOSE Mesh Tools and Argonne’s Mesh
Tools for LFR problem ... 71
9.2.3 Extension of New MOOSE Meshing Capabilities to LFR Problem with Coarse Mesh Diffusion
Acceleration .. 72

9.3 MOOSE TENSOR MECHANICS VERIFICATION: DUCTED HEXAGONAL ASSEMBLY EXAMPLE .. 74
9.3.1 Ducted Assembly Mesh Generation with MOOSE .. 76
9.3.2 Comparison of Results using MOOSE vs. Cubit meshes .. 79

9.4 MULTIPHYSICS VERIFICATION: MICROREACTOR EXAMPLE ... 81
9.4.1 Microreactor Core Mesh Generation with MOOSE Mesh Generators.. 81
9.4.2 BISON Heat-Conduction Simulation with MOOSE mesh .. 84
9.4.3 Griffin-BISON-Sockeye Multiphysics Simulations ... 86

9.5 SUMMARY OF PHYSICS TESTS .. 87

10 SUMMARY .. 88

REFERENCES .. 90

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 v ANL/NSE-21/43

LIST OF FIGURES

Figure 3-1. Example LMFR geometries: heterogeneous pin cell (top left), heterogeneous

ducted assembly (top right), extruded assembly (bottom left), homogeneous assemblies in

core. .. 4

Figure 3-2. Homogenized pin cell/assembly with basic discretization

(SimpleHexagonGenerator) ... 5

Figure 3-3. Homogenized pin cell/assembly with all tri mesh

(PolygonConcentricCircleMeshGenerator).. 6

Figure 3-4. Homogenized pin cell/assembly with all quad mesh

(PolygonConcentricCircleMeshGenerator).. 7

Figure 3-5. Homogenized pin cell/assembly showing extra block required due to >1

background intervals, mixed tri-quad mesh (PolygonConcentricCircleMeshGenerator) 7

Figure 3-6. Homogenized pin cell/assembly showing extra block required due to >1

background intervals, all quad mesh (PolygonConcentricCircleMeshGenerator) 7

Figure 3-7. Different node algorithms for Tri and Quad central elements 8

Figure 3-8. A schematic drawing showing the different regions generated by

PolygonConcentricCircleMeshGenerator. ... 9

Figure 3-9. Heterogeneous hexagonal cell with pin and duct regions 12

Figure 3-10. Heterogeneous hexagonal cell with pin and duct regions, showing extra block

required due to >1 subinterval in center zone .. 13

Figure 3-11. Heterogeneous hexagonal cell with pin and duct regions, showing varied

azimuthal discretization per face and preservation of ring volumes .. 14

Figure 3-12. A mesh generated by

HexagonConcentricCircleAdaptiveBoundaryMeshGenerator. Note that the side 0

of the hexagonal mesh adaptively matches side 3 of the input hexagonal mesh. 15

Figure 3-13. A schematic drawing showing the difference between “none” and “hexagon”

pattern_boundary options. ... 16

Figure 3-14. A patterned hexagonal mesh based on unit mesh generated by

PolygonConcentricCircleMeshGenerator with “hexagon” boundary 17

Figure 3-15. A patterned hexagonal mesh based on unit mesh generated by

PolygonConcentricCircleMeshGenerator with “none” boundary 18

Figure 3-16. A patterned hexagonal mesh based on unit mesh generated by

PatternedHexMeshGenerator with hexagonal boundary ... 19

Figure 3-17. A patterned hexagonal mesh with unit assembly meshes containing 7 and 19

pins. .. 21

Figure 4-1. A typical control drum structure and important geometrical parameters. 22

Figure 4-2. A schematic drawing showing the functionalities of this

AzimuthalBlockIDMeshGenerator object. .. 23

Figure 4-3. Polygon meshes modified by AzimuthalBlockIDMeshGenerator without and

with external boundary nodes moved. ... 24

Figure 4-4. A schematic drawing the indexing rule of control_drum_id in the

PatternedHexMeshGenerator object. ... 26

Figure 4-5. An example of control drums simulated by MultiControlDrumFunction

object. ... 28

Figure 5-1. Reporting ID Generation for Cartesian Geometry .. 31

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 vi

Figure 5-2. Reporting ID Generation for Hexagonal Geometry .. 32

Figure 5-3. Illustration of Reporting ID Generation for Pins and Assemblies in Cartesian

Lattice ... 32

Figure 5-4. Illustration of Reporting ID Generation for Pins and Assemblies in Hexagonal

Lattice ... 33

Figure 5-5. Illustration of auto-numbering using exclude_id option 34

Figure 5-6. Illustration of Reporting ID Generation for Plane ... 35

Figure 5-7. Depletion ID Generation using Reporting IDs .. 36

Figure 6-1: Reactor core geometry with meshed core periphery region (Cubit). 37

Figure 6-2: Example TMG mesh, simple GMG core. ... 39

Figure 6-3: Example TMG mesh, simple cartesian core. ... 40

Figure 6-4: Example TMG mesh, detailed hex assembly. ... 41

Figure 6-5: Example TMG mesh, detailed hex assembly with Steiner points. 42

Figure 6-6: Example TMG mesh, detailed hex core with Steiner points, and extruded into 3D.

 .. 43

Figure 6-7: Example TMG mesh, multi-assembly core. .. 44

Figure 6-8: Example TMG mesh, full core with (left) only outer boundary nodes, and (right)

ring of Steiner points added. .. 45

Figure 7-1: 3D Cartesian core input and mesh built using MOOSE’s new reactor geometry

mesh builder. .. 53

Figure 7-2. 3D Hexagonal core input and mesh built using MOOSE’s new reactor geometry

mesh builder. .. 57

Figure 9-1. Top-down (left) and side (right) views of ABTR homogeneous model, generated

by Argonne’s Mesh Tools .. 60

Figure 9-2. ABTR 2-D Assembly Definition Using SimpleHexagonGenerator 61

Figure 9-3. ABTR 2-D Core Lattice Definition and Dummy Deletion 62

Figure 9-4. ABTR 3-D Extrusion Process ... 64

Figure 9-5. ABTR Sideset Renaming Process ... 65

Figure 9-6. MOOSE Mesh block when using MOOSE mesh tools (left) vs. Argonne’s Mesh

Tools (right) ... 66

Figure 9-7. Top-down view of entire assembly (left), zoomed top-down view of central pins

(middle), and side view (right) of the LFR heterogeneous assembly model, generated by

Argonne’s Mesh Tools ... 68

Figure 9-8. LFR 2-D Pin Definition Using PolygonConcentricCircleMeshGenerator 69

Figure 9-9. LFR Assembly 2-D Pin Lattice Definition ... 70

Figure 9-10. LFR Assembly 3-D Extrusion Process .. 71

Figure 9-11. LFR Assembly Sideset Renaming Process ... 71

Figure 9-12. Zoomed top-down view of background region between outermost pins and duct

for LFR heterogeneous assembly model, generated by Argonne’s Mesh Tools (left) and new

MOOSE mesh tools (right) .. 72

Figure 9-13. Zoomed top-down view of fine-mesh LFR heterogeneous assembly (left) and

coarse-mesh LFR heterogeneous assembly (right), generated by new MOOSE mesh tools

(right) ... 73

Figure 9-14. Coarse Mesh LFR 2-D Pin Definition Using

PolygonConcentricCircleMeshGenerator .. 73

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 vii ANL/NSE-21/43

Figure 9-15. Geometry for hexagonal ducted assembly: (left) 2D cross section at load pad,

and (right) vertical cross section showing location of load pad and active core. 75

Figure 9-16. Schematic showing the thermal gradient developed axially along the core region

of the duct, showing the temperature difference for different corners of the duct. 75

Figure 9-17. Maximum corner temperatures at the top of the core region 76

Figure 9-18 Ducted hexagonal assembly mesh generation .. 77

Figure 9-19 Ducted hexagonal assembly meshes: (a) mesh generated by Cubit; and (b) mesh

generated by MOOSE .. 78

Figure 9-20. Ducted hexagonal assembly mesh cross section at load pad elevation, (left)

generated by Cubit, and (right) generated by MOOSE .. 78

Figure 9-21. Cubit mesh displacement in m (left), and MOOSE displacement in m (right). . 79

Figure 9-22. Duct thermal deflection displacement (Cubit and MOOSE meshes) 80

Figure 9-23. Microreactor core meshes produced by CUBIT (number of nodes: 1.7 × 106):

(a) 1/6 symmetric core mesh, (b) cross-section of the core, and (c) zoom-in region of (b); and

MOOSE mesh generators (number of nodes: 1.0 × 106): (d) 1/6 symmetric core full core

mesh, (e) cross-section of the core, and (f) zoom-in region of (e) ... 82

Figure 9-24. 2D assembly mesh generation showing moderator, heat pipe, and fuel pin cell

being combined into a hexagonal pattern... 82

Figure 9-25. 2D core mesh generation showing assemblies (fuel, control drum, reflector,

dummy) being combined into a core .. 83

Figure 9-26. 3D 1/6 symmetric core mesh generation: (a) 2D core mesh; (b) trimmed (dummy

blocks removal) and sliced 2D 1/6 symmetric core mesh; (c) extruded 3D 1/6 symmetric core

mesh; and (d) completed 3D 1/6 symmetric core mesh after defining axial blocks 83

Figure 9-27. Temperature distribution of the 1/6 symmetric core at the last time step (20 sec)

of simulation: (a) simulation based on the mesh generated by CUBIT (b) simulation based on

the mesh generated by meshgenerators .. 84

Figure 9-28. Temperature evolution of the heat conduction simulation: (a) average fuel

temperature, and (b) average heat pipe surface temperature .. 85

Figure 9-29. Power density comparison of multiphysics simulations using the two different

meshes (unit: W/m3). .. 85

Figure 9-30. Temperature comparison of Multiphysics simulations using the two different

meshes (unit: K). .. 86

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 viii

LIST OF TABLES

Table 3-1. Guidelines for when an extra block is added to the center zone in

PolygonConcentricCircleMeshGenerator .. 10

Table 4-1. Geometry parameters needed for MultiControlDrumFunction 27

Table 7-1. Description of auto-generated sidesets ... 51

Table 8-1. Generalized algorithm to calculate element centroids .. 59

Table 9-1. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the ABTR Problem ... 67

Table 9-2. Description of Parameters Used in Input Block for Pin Definitions in Figure 9-8 69

Table 9-3. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the LFR Assembly Problem ... 72

Table 9-4. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the LFR Assembly Problem with Coarse Mesh Diffusion Acceleration 74

Table 9-5. Comparison of centerline deflection results between the Cubit mesh and the

MOOSE hex mesh generator, at the top of the core region, the ACLP and TLP midplanes ... 80

Table 9-6. Key calculated parameters comparison between the two meshes (temperature unit:

K) ... 87

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 1 ANL/NSE-21/43

1 Introduction

Multiphysics Object Oriented Simulation Environment (MOOSE) (Permann, et al., 2020) is an

open-source, parallel finite element framework designed to permit rapid development of robust

multi-physics modeling capabilities. The Department of Energy (DOE) Nuclear Energy Advanced

Modeling and Simulation Program (NEAMS) program (Stanek, 2019) is tasked with the

development, demonstration, and deployment of advanced simulation tools for modeling light

water reactors (LWR) and advanced reactors (AR). NEAMS has developed a suite of MOOSE-

based physics tools including Griffin (Lee, et al., 2021), BISON (Williamson, et al., 2021), and

others which leverage the finite element geometry representation, solvers, and coupling options

available in MOOSE. This toolset performs predictive multiphysics simulations of advanced

reactors including liquid-metal cooled fast reactors (LMFR), molten salt reactors (MSR), high

temperature gas-cooled reactors (HTGR), fluoride-salt cooled high temperature reactors (FHR),

and microreactors (MR). The MOOSE MultiApp system (Gaston, et al., 2015) is also used to

perform light water reactor simulations through coupling of CASL’s VERA suite (VERA, 2021)

with MOOSE-based tools.

MOOSE-based physics codes require an input finite element mesh on which the physics solution

is calculated, reported, and transferred to other physics codes. The mesh is a discretized

representation of the physical geometry onto which material properties are assigned and on which

basis functions for representing the solution live. Creation of the finite element mesh is often one

of the most time-consuming stages of input preparation during nuclear reactor analysis, particularly

for reactor physics in which the entire core geometry generally needs to be modeled rather than

isolated components (single pins, subchannels, or ex-core components). High-fidelity geometry

modeling (explicit pins, gap regions, cladding) further requires elaborate tracking of groups of

elements for material property assignment and output reporting which can be considerably complex

for the user to identify and maintain.

MOOSE users have two mesh input options: (1) supply a prepared mesh file generated from an

external (non-MOOSE-based) meshing program like Cubit (CUBIT, 2021), or (2) create a mesh in

memory (or supply a mesh) using the MOOSE Mesh System available within the framework itself.

Use of an external meshing program allows maximum flexibility in terms of geometry support but

is time-consuming for the user, requires a steep learning curve to create even basic geometries, and

does not permit the usage of additional mesh metadata beyond basic geometry definitions.

Furthermore, external meshes cannot be loaded into memory in parallel unless pre-partitioned and

may consequently carry memory burden issues on some computing architectures.

Meshes created using MOOSE’s Mesh System do not require the mesh to be written to file, permit

extra element-wise information and metadata on the mesh, and utilize simple and intuitive input

syntax to reduce user burden. The Mesh System allows the user to start with a simple mesh and

perform operations on it (e.g. rotation, block deletion, stitching) in order to build up larger meshes.

However, while MOOSE’s Mesh System contains many useful MeshGenerator objects, many

reactor physics users must leverage external software due to lack of support for certain geometry

types. During FY21, the NEAMS program made investments to expand the capability of the

existing MOOSE Mesh System to support common advanced reactor geometries as well as

facilitate the bookkeeping of element groups for both material assignment and output reporting,

greatly speeding the reactor analyst’s efforts to create input meshes. These expanded capabilities

are described in this report.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 2

2 Task Identification

Priorities were gathered from the MOOSE framework team, Griffin developers, and Bison

developers. Immediate meshing needs were identified in the reactor physics community, whereas

the fuel performance community has needs that can be met with a longer timeframe. Based on those

discussions and ongoing collaborations with staff in the NEAMS Application Drivers Technical

Area, a series of meshing-related improvements for the MOOSE framework were identified and

prioritized to improve reactor physics workflow during FY21:

1. Hexagonal geometry meshing capability

a. Hexagonal pin cells with optional pin representation

b. Hexagonal assembly (triangular lattice of pins) with optional duct representation

c. Hexagonal core (triangular lattice of assemblies)

2. Control drum geometry meshing capability

a. Steady state snapshot

b. Time-dependent rotation

3. Reporting ID capability, i.e. implementation of element-wise mesh information for

regular Cartesian and hexagonal geometries, to identify specific reactor features/zones

a. Pin, assembly, and plane “reporting” ids to facilitate output processing

b. Depletion ids to facilitate tracking of materials in different zones during the solve

and output postprocessing

4. Core periphery meshing capability

a. Ability to mesh the peripheral region between a core and cylindrical exterior

boundary via a triangle meshing algorithm

5. Reactor Geometry Mesh Builder capability (employs reactor analyst input language

to build up 3D heterogeneous reactor cores more intuitively, analogous to Argonne’s

Mesh Tools capability)

a. Interfaces for Cartesian and Hexagonal cores

b. Automatic integration of reporting ids

c. Support for assigning materials during mesh generation

These capabilities are focused on improving MOOSE-based reactor physics workflow which faces

the unique challenges of needing to model very large, detailed geometric domains, but the

capabilities can be leveraged for other physics tools as well. All of the developed capabilities are

planned to be integrated into the open-source MOOSE framework under the “reactor” module

(moose/modules/reactor). Per MOOSE requirements, all capabilities include test cases and

documentation. Verification of the developed capabilities was performed using Griffin and other

physics simulations. It should be noted that the first capability is loosely based on capabilities

present in Argonne’s Mesh Tools kit (Smith & Shemon, 2015) whose adoption led to huge speed

ups in input preparation time for the PROTEUS-SN (Shemon, Smith, & Lee, 2016) and PROTEUS-

MOC (Jung, Lee, & Smith, 2018) finite element-based reactor physics codes.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 3 ANL/NSE-21/43

As a concise reference, the following objects were created and/or updated for the MOOSE

Framework:

Mesh Generator Objects:

• AssemblyMeshGenerator (NEW)

• AzimuthalBlockIDMeshGenerator (NEW)

• CartesianIDPatternedMeshGenerator (NEW)

• CoreMeshGenerator (NEW)

• DepletionIDGenerator (NEW)

• FancyExtruderGenerator (updated)

• HexagonConcentricCircleAdaptiveMeshGenerator (NEW)

• HexIDPatternedMeshGenerator (NEW)

• PatternedHexMeshGenerator (NEW)

• PinMeshGenerator (NEW)

• PlaneIDGenerator (NEW)

• PolygonConcentricCircleMeshGenerator (NEW)

• SimpleHexagonGenerator (NEW)

• TriangulatedMeshGenerator (NEW)

Functions

• MultiControlDrumFunction (NEW)

• Utilities to Facilitate Element Centroid Calculations (NEW)

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 4

3 Hexagonal Geometry Meshing Capability

3.1 Reactor Analysis Motivation

Liquid metal-cooled fast reactors (LMFR) such as sodium-cooled (SFR) and lead-cooled fast

reactors (LFR) generally employ hexagonal pins, assemblies, and cores as depicted in Figure 3-1.

Figure 3-1. Example LMFR geometries: heterogeneous pin cell (top left), heterogeneous ducted

assembly (top right), extruded assembly (bottom left), homogeneous assemblies in core.

The fuel or control pins comprise multiple radial regions representing solid or annular fuel, sodium

bond, and cladding. The pins are packed into a triangular lattice inside an enclosing hexagonal

ducted assembly, which is spaced from other assemblies by an inter-assembly gap containing

coolant. The assemblies are patterned in a triangular lattice into a generally hexagonally shaped

core, although a few positions on the periphery are typically empty to round off the core boundary.

Control assemblies typically contain two ducts: an inner duct enclosing the moving control

material, and a stationary outer duct. The ducts are usually separated by liquid metal coolant. Shield

and reflector assemblies are typically simpler variations of the fuel assembly geometry.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 5 ANL/NSE-21/43

Within an assembly, all LMFR pins are typically identical, but different assembly types will have

different pin sizes. Triangular lattices with hexagonal pins may also occur in other advanced reactor

types such as microreactors. LMFR pins, assemblies, and cores can generally be described in 2D

and extruded axially (i.e. they do not require modeling of conical regions).

This section describes new capabilities in MOOSE’s Mesh System to support the geometries

prevalent in LMFRs

3.2 Homogeneous Hexagonal Pin Cells and Assemblies

Homogeneous hexagonal meshes, i.e. hexagonal geometries without explicit pin or duct

representation, are typically needed in (1) a nodal-type transport methods, (2) coarse mesh scoping

studies, and (3) coarse mesh acceleration methods. Two new mesh generators are available for this

purpose: SimpleHexagonGenerator and PolygonConcentricCircleMeshGenerator.

The latter of these is intended for heterogeneous pin cells but may also be used for homogenized

pin cells/assemblies.

3.2.1 SimpleHexagonGenerator

SimpleHexagonGenerator creates a hexagon subdivided into six equilateral triangles connected

at a common (0,0) center node. The resulting mesh represents a homogenized fuel pin or assembly

which can be patterned into larger assemblies or cores using the newly developed

PatternedHexMeshGenerator.

SimpleHexagonGenerator has a limited set of input options. The user must specify the hexagon

size and style (‘apothem’ = half-pitch or center-to-flat, or ‘radius’ = center-to-vertex). The resulting

block of elements and external boundary can optionally be renamed and/or renumbered.

[Mesh]
 [simplehex]
 type = SimpleHexagonGenerator
 hexagon_size = 0.146
 hexagon_size_style = 'apothem'
 # optional
 block_id = 40
 block_name = 'FuelAssembly'
 external_boundary_id = 9999
 external_boundary_name = 'FuelBdry'
 []
[]

Figure 3-2. Homogenized pin cell/assembly with basic discretization (SimpleHexagonGenerator)

3.2.2 PolygonConcentricCircleMeshGenerator

PolygonConcentricCircleMeshGenerator may be used for homogenized hexagonal cells

but has many more options to model explicit pins and ducts. This mesh generator is discussed for

heterogenous geometry in Section 3.3 whereas example usage for homogeneous pin cells follows.

This mesh generator is generalized to mesh regular polygons (with 3 or more sides). Therefore, the

number of polygon sides should be specified (num_sides). The default num_sides is 6 (hexagon).

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 6

The user may specify the number of azimuthal subdivisions per polygon side

(num_sectors_per_side) uniquely for each hexagon side. Each entry in this array must be an even

integer (minimum value is 2). The coarsest mesh possible is shown in Figure 3-3 which has 12

triangular elements rather than the 6 yielded by SimpleHexagonGenerator. Figure 3-4 shows

the coarsest all-quad mesh possible. Additional radial subdivisions are possible by specifying

background_intervals>1 (Figure 3-5, Figure 3-6).

Important note: If background_intervals>1 (with no rings defined as in Figure 3-5 and Figure

3-6), the background region will be defined as 2 separate blocks (see Table).

The separate block at the center of the meshes in Figure 3-5 and Figure 3-6 is required to

accommodate either triangular or quadrilateral elements in the center zone (quad elements are

enabled by quad_center_elements = true). Setting background_intervals to 3 or larger will not add

additional background blocks (capped at 2). Figure 3-5 and Figure 3-6 demonstrate the additional

block_ids and block_names required to name the extra block at the center, compared to Figure 3-3

and Figure 3-4.

[Mesh]
 [pccsimplehex1BG]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 polygon_size = 0.146
 polygon_size_style = 'apothem'
 num_sectors_per_side = '2 2 2 2 2 2' # even; min 2
 # optional
 background_intervals = 1
 background_block_ids = '40'
 background_block_names = 'Fuel'
 []
[]

Figure 3-3. Homogenized pin cell/assembly with all tri mesh

(PolygonConcentricCircleMeshGenerator)

[Mesh]
 [pccsimplehex1BGquad]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 polygon_size = 0.146
 polygon_size_style = 'apothem'
 num_sectors_per_side = '2 2 2 2 2 2' # even; min 2
 # optional
 background_intervals = 1
 background_block_ids = '40'
 background_block_names = 'Fuel'
 quad_center_elements = true
 []
[]

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 7 ANL/NSE-21/43

Figure 3-4. Homogenized pin cell/assembly with all quad mesh

(PolygonConcentricCircleMeshGenerator)

[Mesh]
 [pccsimplehex2BG]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 polygon_size = 0.146
 polygon_size_style = 'apothem'
 num_sectors_per_side = '2 2 2 2 2 2' # even; min 2
 # optional
 background_intervals = 2
 background_block_ids = '40 41'
 background_block_names = 'Fuel1 Fuel2'
 []
[]

Figure 3-5. Homogenized pin cell/assembly showing extra block required due to >1 background

intervals, mixed tri-quad mesh (PolygonConcentricCircleMeshGenerator)

[Mesh]
 [pccsimplehex2BGquad]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 polygon_size = 0.146
 polygon_size_style = 'apothem'
 num_sectors_per_side = '2 2 2 2 2 2' # even; min 2
 # optional
 background_intervals = 2
 background_block_ids = '40 41'
 background_block_names = 'Fuel1 Fuel2'
 quad_center_elements = true
 []
[]

Figure 3-6. Homogenized pin cell/assembly showing extra block required due to >1 background

intervals, all quad mesh (PolygonConcentricCircleMeshGenerator)

PolygonConcentricCircleMeshGenerator has many additional input options to control

block and boundary names and ids, as well as the spacing of nodes on each edge.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 8

Figure 3-7. Different node algorithms for Tri and Quad central elements

3.3 Heterogeneous Hexagonal Pin Cells

Creation of the heterogeneous hexagonal pin cells commonly found in LMFR and other reactor

geometries is performed with the new mesh generator object

PolygonConcentricCircleMeshGenerator, which was modeled after the existing

ConcentricCircleMeshGenerator object (the latter creates square pin cells typically used in

LWR lattices). The new object is referred to with the ‘Polygon’ prefix instead of ‘Hexagon’ because

the algorithm is generalized to mesh regular 2D polygons with 3 or more sides and is therefore not

limited to hexagons. The Cartesian option (num_sides = 4) includes the functionality of

ConcentricCircleMeshGenerator along with additional capabilities although it outputs a

mesh rotated 45 degrees (vertex up, like a diamond) compared to
ConcentricCircleMeshGenerator.

We limit our discussion here to hexagonal pin cells (num_sides = 6) which are relevant for

advanced reactors.

3.3.1 PolygonConcentricCircleMeshGenerator

PolygonConcentricCircleMeshGenerator creates 2D meshes for concentric circles inside a

polygon enclosure with or without duct features. Usage of this mesh generator for homogenized

pin cells (no pins or ducts) was discussed in the previous section. Doing so requires an extra

background block to be defined if background_intervals is larger than 1.

The input options for PolygonConcentricCircleMeshGenerator can be categorized into 4

major groups:

• General polygon options (number of sides, size, type of elements to use in center, azimuthal

discretization, whether to uniformly space boundary nodes)

• Ring parameters

• Background parameters (region between rings and ducts)

• Duct parameters

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 9 ANL/NSE-21/43

The outer radius of each ring is given in the vector ring_radii. Meshing subintervals for the

respective rings are given in the vector ring_intervals. The optional ring_block_ids and

ring_block_names are used to renumber the block ids and block names to user-defined values. Ring

volumes are automatically preserved through the use of preserve_volumes=on. The centermost

elements can be either triangle (default) or quad (use_quad_center_elements = on).

The background region is the region enclosed between the outermost ring and the innermost duct

region – it is the coolant region for LMFR geometries.

The inner size of each duct is given in the vector duct_sizes, where duct_size_style (apothem or

radius) describes the distance being specified. Apothem is simply the ½ pitch, i.e. half the flat-to-

flat distance or the center-to-side distance. The term apothem is used because it is applicable to

polygons with odd numbers of sides.

A typical hexagon geometry is shown here which include the reference side index numbering.

Figure 3-8. A schematic drawing showing the different regions generated by

PolygonConcentricCircleMeshGenerator.

In general, concentric blocks of elements are created for each ring, the background region, and each

duct. The default block numbering starts at 0 (centermost zone) and increases by 1 with increasing

radius of the block. Generally the number of blocks in the resulting mesh is equal to the number of

rings + number of ducts + 1.

However, in some cases one extra block is added in the center zone (either 1st ring or background

zone depending on whether rings were defined). This extra block is required so that the code can

accommodate either triangular or quadrilateral elements for maximum flexibility to the user, while

still maintaining as much symmetry as possible.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 10

The extra block appears in two scenarios:

• At least one ring is present, and the first ring has more than 1 subinterval

(ring_intervals(0)>1), or

• No rings are present, and the background region has more than 1 subinterval

(background_intervals>1)

The presence of this extra block affects the automated block numbering (center geometrical zone

includes subdomains 0 and 1, instead of just 0), as well as the user-defined block numbering and

naming input entries which require one extra entry. If the user receives errors regarding size of

background_block_id/names or ring_block_ids/names, they should first check whether one of the

two situations above applies. If so, an extra entry is required to number/name the extra block in the

innermost region. The specified block id/name for the extra block must be different than the original

block. Table 3-1Table summarizes the array sizes required in the 4 possible different situations.

Table 3-1. Guidelines for when an extra block is added to the center zone in

PolygonConcentricCircleMeshGenerator

Are

Rings

Defined?

Center Zone

Meshing Intervals

Center Zone

Description

Array Sizes

No background_intervals

= 1

Center zone

comprises 1 block.

Size(background_block_ids) =

size (background_block_names) =

1

background_intervals

> 1

Center zone

comprises 2 blocks.

Size(background_block_ids) =

size (background_block_names) =

2

Yes ring_intervals(0) = 1 Center zone

comprises 1 block.

Size(ring_block_ids) =

size(ring_block_names) =

size (ring_intervals)

ring_intervals(0) > 1 Center zone

comprises 2 blocks.

Size(ring_block_ids) =

size(ring_block_names) =

size (ring_intervals) + 1

Figure 3-9 and Figure 3-10 show sample inputs for generating pin cell meshes with duct regions.

To remove the duct regions, simply omit the duct_* options. Similarly, to remove the ring regions,

simply omit the ring_* options.

Figure 3-11 demonstrates the assignment of different azimuthal discretizations on each face. The

number of azimuthal sectors per side (num_sectors_per_side) is a vector of even integers of size

(num_sides). Volume preservation of the rings is performed with preserve_volumes = on.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 11 ANL/NSE-21/43

If different num_sectors_per_side are invoked on different sides of the polygon, then the user

must utilize the triangular mesh option for the innermost ring of the pin cell

(quad_center_element = false).

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 12

[Mesh]
 [HetPinCell]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 num_sectors_per_side = ‘4 4 4 4 4 4’
 polygon_size = 0.05
 polygon_size_style = ‘apothem’
 uniform_mesh_on_sides = true

 ring_radii = ‘0.01 0.02 0.025’
 ring_intervals = ‘1 2 1’
 ring_block_ids = ‘10 15 20’
 ring_block_names = ‘hole fuel cladding’
 preserve_volumes = on
 quad_center_elements = true #false

 background_intervals = 2
 background_block_ids = ‘40’
 background_block_names = ‘coolant’

 duct_sizes_style = ‘apothem’
 duct_sizes = ‘0.044 0.0475’
 duct_intervals = ‘1 1’
 duct_block_ids = ‘100 110’
 duct_block_names = ‘duct gap’
 []
[]

quad_center_elements = true quad_center_elements = false

Figure 3-9. Heterogeneous hexagonal cell with pin and duct regions

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 13 ANL/NSE-21/43

[Mesh]
 [HetPinCell]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 num_sectors_per_side = ‘4 4 4 4 4 4’
 polygon_size = 0.05
 polygon_size_style = ‘apothem’
 uniform_mesh_on_sides = true

 ring_radii = ‘0.01 0.02 0.025’
 ring_intervals = ‘2 2 1’
 ring_block_ids = ‘10 11 15 20’
 ring_block_names = ‘hole1 hole2 fuel clad’
 preserve_volumes = on
 quad_center_elements = true #false

 background_intervals = 2
 background_block_ids = ‘40’
 background_block_names = ‘coolant’

 duct_sizes_style = ‘apothem’
 duct_sizes = ‘0.044 0.0475’
 duct_intervals = ‘1 1’
 duct_block_ids = ‘100 110’
 duct_block_names = ‘duct gap’
 []
[]

quad_center_elements = true quad_center_elements = false

Figure 3-10. Heterogeneous hexagonal cell with pin and duct regions, showing extra block

required due to >1 subinterval in center zone

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 14

[Mesh]
 [HetPinCell]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # 6 for hexagon is default
 num_sectors_per_side = ‘4 6 8 8 6 2’
 polygon_size = 0.05
 polygon_size_style = ‘apothem’
 uniform_mesh_on_sides = true

 ring_radii = ‘0.02 0.025’
 ring_intervals = ‘3 1’
 ring_block_ids = ‘15 16 20’
 ring_block_names = ‘fuel1 fuel2 clad’
 preserve_volumes = on
 quad_center_elements = false

 background_intervals = 2
 background_block_ids = ‘40’
 background_block_names = ‘coolant’

 duct_sizes_style = ‘apothem’
 duct_sizes = ‘0.044 0.0475’
 duct_intervals = ‘1 1’
 duct_block_ids = ‘100 110’
 duct_block_names = ‘duct gap’
 []

[]

Figure 3-11. Heterogeneous hexagonal cell with pin and duct regions, showing varied azimuthal

discretization per face and preservation of ring volumes

The typical uses of this mesh generator object are therefore to create:

• Homogeneous pin cell or assembly

• Heterogeneous pin cell (rings present)

• Partially heterogeneous assembly (ducts present)

• The initial mesh for a heterogeneous control drum (both rings and duct present), which

will be modified to create the absorber arc by another mesh generator.

3.3.2 HexagonConcentricCircleAdaptiveBoundaryMeshGenerator

In some cases, the user may want to develop a hexagonal pin cell or partially homogenized

assembly mesh whose nodes will match other already developed meshes.

HexagonConcentricCircleAdaptiveBoundaryMeshGenerator was developed exactly for

this purpose. As its name suggests, this mesh generator creates hexagons rather than general

polygons. It therefore has the functionality of PolygonConcentricCircleMeshGenerator
(with num_sides=6), plus an additional capability to customize the azimuthal discretization to

match specified neighbor meshes. An example of this approach is shown in Figure 3-12.

[Mesh]
 [fmg]
 type = FileMeshGenerator

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 15 ANL/NSE-21/43

 file = hex_in.e
 []
 [gen]
 type = HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
 num_sides = 6
 num_sectors_per_side = ‘4 4 4 4 4 4’
 background_intervals = 2
 hexagon_size = 5.0
 sides_to_adapt = 0
 inputs = ‘fmg’
 []
[]

Figure 3-12. A mesh generated by

HexagonConcentricCircleAdaptiveBoundaryMeshGenerator. Note that the side 0 of the

hexagonal mesh adaptively matches side 3 of the input hexagonal mesh.

3.3.3 IDs and Names of Blocks and Boundaries

MOOSE inherits libMesh’s ID and Name systems of blocks (subdomains) and boundaries

(sidesets/nodesets). Each subdomain, sideset, or nodeset intrinsically have an ID, which is an

integer. There is also an option to assign std::string type name for each subdomain, sideset, or

nodeset. This name assignment is achieved through a std::map type data containing IDs as keys and

corresponding names as values.

For both the PolygonConcentricCircleMeshGenerator and

HexagonConcentricCircleAdaptiveBoundaryMeshGenerator objects, the blocks are

sequentially numbered from the innermost block to the outmost block by default. By default, the

blocks are named by the corresponding block ids. Optionally, for both mesh generators, the users

can assign customized block ids and names by setting the following input parameters:

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 16

ring_block_ids, ring_block_names, background_block_ids, background_block_names,

duct_block_ids, and duct_block_names.

The external boundary has an ID of 10,000 and is unnamed by default. The users can assign the

customized ID and name for the external boundary by setting input parameter

external_boundary_id and external_boundary_name.

3.4 Hexagonal Assemblies and Cores

This section discusses how to build up a series of hexagonal meshes into a grid pattern to create an

assembly or core.

3.4.1 PatternedHexMeshGenerator

PatternedHexMeshGenerator assembles multiple 2D hexagonal meshes into a hexagonal grid

pattern and optionally adds additional background region and ducts around the periphery of the

grid. This mesh generator can be used to mesh a hexagonal assembly containing different pin types

or explicit pins, or a reactor core comprising several assemblies.

PatternedHexMeshGenerator is the hexagon equivalent to PatternedMeshGenerator which

stitches together Cartesian geometries. However, PatternedHexMeshGenerator includes

additional options to treat the grid boundary which is necessary to support hexagonal reactor

geometries as mentioned above.

Like PatternedMeshGenerator, the user specifies input meshes via the inputs parameter, and

places these input meshes into a hexagonal grid in the pattern array. The pattern array must be a

perfect hexagonal grid – no missing entries are permitted. Dummy meshes must be used to fill in

empty slots and deleted later if the desired pattern is not a perfect hexagon.

Figure 3-13. A schematic drawing showing the difference between “none” and “hexagon”

pattern_boundary options.

Finally, the user specifies the boundary around the pattern using pattern_boundary (see Figure

3-13). Valid options are hexagon or none. If pattern_boundary = none, the input meshes will be

stitched together and the resulting mesh will have a zig-zag boundary (e.g. reactor core). If

pattern_boundary = hexagon, then an extra layer of background material will be stitched around

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 17 ANL/NSE-21/43

the pattern according to hexagon_size so that the outer boundary of the pattern is a hexagon rather

than a zig-zag boundary (e.g. assembly). Optional duct regions may also be added via duct_sizes

to specify the inner duct boundaries and duct_intervals to describe the meshing resolution.

Note that the constituent input meshes for this mesh generator may be created from
SimpleHexagonGenerator, PolygonConcentricCircleMeshGenerator,

HexagonConcentricCircleAdaptiveMeshGenerator, and PatternedHexMeshGenerator itself

(see Figure 3-14 through Figure 3-16 for more details).

[Mesh]
 [hex_1]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '4 4 4 4 4 4'
 background_intervals = 2
 ring_radii = 4.0
 ring_intervals = 2
 ring_block_ids = '10 15'
 ring_block_names = 'center_tri center'
 background_block_ids = 20
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = on
 []
 [pattern]
 type = PatternedHexMeshGenerator
 inputs = 'hex_1'
 pattern = '0 0;
 0 0 0;
 0 0'
 pattern_boundary = hexagon
 background_intervals = 2
 background_block_id = 25
 background_block_name= "assem_block"
 hexagon_size = 18
 []

[]

Figure 3-14. A patterned hexagonal mesh based on unit mesh generated by

PolygonConcentricCircleMeshGenerator with “hexagon” boundary

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 18

[Mesh]
 [hex_1]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '4 4 4 4 4 4'
 background_intervals = 2
 ring_radii = 4.0
 ring_intervals = 2
 ring_block_ids = '10 15'
 ring_block_names = 'center_tri center'
 background_block_ids = 20
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = on
 []
 [pattern]
 type = PatternedHexMeshGenerator
 inputs = 'hex_1'
 pattern = '0 0;
 0 0 0;
 0 0'
 pattern_boundary = none
 []
[]

Figure 3-15. A patterned hexagonal mesh based on unit mesh generated by

PolygonConcentricCircleMeshGenerator with “none” boundary

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 19 ANL/NSE-21/43

[Mesh]
 [hex_1]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '4 4 4 4 4 4'
 background_intervals = 2
 ring_radii = 4.0
 ring_intervals = 2
 ring_block_ids = '10 15'
 ring_block_names = 'center_tri center'
 background_block_ids = 20
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = on
 []
 [pattern_1]
 type = PatternedHexMeshGenerator
 inputs = 'hex_1'
 pattern = '0 0;
 0 0 0;
 0 0'
 hexagon_size = 15
 background_block_id = 80
 background_block_name = hex_background
 []
 [pattern_2]
 type = PatternedHexMeshGenerator
 inputs = 'pattern_1'
 pattern_boundary = none
 generate_core_metadata = true
 pattern = '0 0;
 0 0 0;
 0 0'
 []
[]

Figure 3-16. A patterned hexagonal mesh based on unit mesh generated by

PatternedHexMeshGenerator with hexagonal boundary

The block ids and names of the input meshes are inherited by PatternedHexMeshGenerator.

When a mesh with pattern_boundary = hexagon is generated, the pattern background block is

unnamed with an ID of 1,000 by default. If there are any duct layers, the duct blocks are unnamed

with their IDs sequentially numbered starting from 1,001. The users can assign customized IDs and

names for background blocks and duct blocks by setting input parameters: background_block_id,

background_block_name, duct_block_ids, and duct_block_names.

The external boundary has an ID of 10,000 and is unnamed by default. The users can assign the

customized ID and name for the external boundary by setting input parameter

external_boundary_id and external_boundary_name.

When the users need to use PatternedHexMeshGenerator to recursively combine hexagonal

assembly meshes, the Boolean type input parameter generate_core_metadata = true. In that case,

the appropriate assembly MeshMetaData can be utilized for core mesh generation; and a series of

reactor core MeshMetaData are generated for other MOOSE Reactor module objects such as

MultiControlDrumFunction. To be clear, generate_core_metadata = true is required when

combining assemblies into a core map, which requires the use of PatternedHexMeshGenerator

to pattern inputs created from PatternedHexMeshGenerator.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 20

3.5 Current Limitations

The adaptive mesh generator only works for single-pin unit mesh now. For assembly unit meshes,

if the meshes contain a different number of pins, some special care needs to be taken by the user to

utilize least common multipliers to ensure stitchability. An example of such an approach is

illustrated in Figure 3-17. When unit assembly meshes with many different numbers of pins are

involved, it is impractical to find a reasonably small least common multiplier. Therefore, a more

practical and general solution needs to be developed to better handle such scenarios.

[Mesh]
 [hex_1]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '10 10 10 10 10 10'
 background_intervals = 1
 ring_radii = 4.0
 ring_intervals = 1
 ring_block_ids = '10'
 ring_block_names = 'center_1'
 background_block_ids = 20
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = on
 []
 [hex_2]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '6 6 6 6 6 6'

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 21 ANL/NSE-21/43

 background_intervals = 1
 ring_radii = 2.0
 ring_intervals = 1
 ring_block_ids = '110'
 ring_block_names = 'center_2'
 background_block_ids = 120
 background_block_names = background
 polygon_size = 3.0
 preserve_volumes = on
 []
 [pattern_1]
 type = PatternedHexMeshGenerator
 inputs = 'hex_1'
 pattern = '0 0;
 0 0 0;
 0 0'
 hexagon_size = 15
 background_block_id = 20
 background_block_name = hex_background_1
 background_intervals = 2
 uniform_mesh_on_sides = true
 []
 [pattern_2]
 type = PatternedHexMeshGenerator
 inputs = 'hex_2'
 pattern = '0 0 0;
 0 0 0 0;
 0 0 0 0 0;
 0 0 0 0;
 0 0 0'
 hexagon_size = 15
 background_block_id = 120
 background_block_name = hex_background_2
 background_intervals = 2
 uniform_mesh_on_sides = true
 []
 [pattern_3]
 type = PatternedHexMeshGenerator
 inputs = 'pattern_1 pattern_2'
 pattern_boundary = none
 generate_core_metadata = true
 pattern = '0 0;
 0 1 0;
 0 0'
 []

[]

Figure 3-17. A patterned hexagonal mesh with unit assembly meshes containing 7 and 19 pins.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 22

4 Control Drum Geometry Meshing Capability

4.1 Reactor Analysis Motivation

Rotating control drums are utilized in microreactor and other core designs for reactivity control

during normal operation. Rather than control rods which are inserted and withdrawn axially, control

drums can be rotated to position the control material closer or further away from the core center.

The control drum contains a ring of material of which only a partial arc contains absorber material.

When the control material is closest to the core center, the reactivity feedback is most negative and

this is similar to the “control rods inserted” state. A typical control drum geometry is shown in

Figure 4-1.

Figure 4-1. A typical control drum structure and important geometrical parameters.

At steady state, the control drum will be in a static position. However, during rotation, the absorber

arc is moving and consequently the material-to-geometry mapping is changing with time. Both of

these cases are handled with new MOOSE framework mesh generators and functions so that the

user can easily model a steady state position or control drum rotation. Currently, the control drum

geometry must be contained within a single outer hexagon boundary.

4.2 Steady State Control Drum Position

4.2.1 AzimuthalBlockIDMeshGenerator

To mesh the geometry for a control drum at a single position, the newly developed

AzimuthalBlockIDMeshGenerator object may be leveraged. This object modifies a hexagonal

pin cell mesh generated by either PolygonConcentricCircleMeshGenerator or

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 23 ANL/NSE-21/43

HexagonConcentricCircleAdaptiveBoundaryMeshGenerator by creating new blocks of

elements within a user-defined azimuthal sector, given by start_angle and angle_range in degrees.

The user may select multiple radial blocks by old_block_ids or old_block_names within that sector

to modify simultaneously. Azimuthal node positions are moved to exact positions, and new blocks

are created within the azimuthal sector for the user-selected radial blocks.

Prior to moving node positions, the algorithm finds the nodes that have azimuthal angles closest to

the given azimuthal range and moves those to the exact azimuthal positions. Hexagon corner nodes

may not be moved, and the code in that case moves the next nearest nodes. As moving nodes in the

azimuthal direction changes the volumes (areas) of the circular blocks, the volume preservation

radius correction is made if preserve_volumes is set as true.

If the external block (i.e., the block that contains the external boundary of the mesh) is not selected

to be modified, the nodes on the external boundary are not altered by this object, which facilitates

mesh stitching since the outer boundary will remain unmodified. On the other hand, if the external

block is selected, the nodes on the external boundary are moved as well. Figure 4-2 depicts the

movement or non-movement of external boundary nodes (orange region) based on whether that

external block was selected to be modified. Figure 4-3 shows input syntax examples.

Figure 4-2. A schematic drawing showing the functionalities of this

AzimuthalBlockIDMeshGenerator object.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 24

[Mesh]
 [cd]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '4 4 4 8 4 4'
 background_intervals = 1
 ring_radii = '4.2 4.8'
 ring_intervals = '2 1'
 ring_block_ids = '10 15 20'
 ring_block_names = 'center_tri center cd_ring'
 background_block_ids = 30
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = true
 []
 [./cd_azi_define]
 type = AzimuthalBlockIDMeshGenerator
 input = cd
 start_angle = 280
 angle_range = 100
 old_block_ids = '10 15 20'
 new_block_ids = '100 150 200'
 new_block_names = 'ctr_tri_new ctr_new cd_ring_new'
 preserve_volumes = true
 []
[]

[Mesh]
 [cd]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '4 4 4 8 4 4'
 background_intervals = 1
 ring_radii = '4.2 4.8'
 ring_intervals = '2 1'
 ring_block_ids = '10 15 20'
 ring_block_names = 'center_tri center cd_ring'
 background_block_ids = 30
 background_block_names = background
 polygon_size = 5.0
 preserve_volumes = true
 []
 [./cd_azi_define]
 type = AzimuthalBlockIDMeshGenerator
 input = cd
 start_angle = 280
 angle_range = 100
 old_block_ids = '10 15 30'
 new_block_ids = '100 150 200'
 new_block_names = 'ctr_tri_new ctr_new cd_ring_new'
 preserve_volumes = true
 []
[]

Figure 4-3. Polygon meshes modified by AzimuthalBlockIDMeshGenerator without and

with external boundary nodes moved.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 25 ANL/NSE-21/43

4.3 Time-Dependent Control Drum Rotation

In order to simulate the dynamic behavior during control drums rotation during power transients, a

MOOSE Functions object MultiControlDrumFunction was developed to quantify the real-

time volume fraction of absorber/reflector materials in each control drum element. Specifically, the

MultiControlDrumFunction (1) assesses multiple control drum absorber positions in the core

based on metadata from PatternedHexMeshGenerator, (2) computes the position of each

control drum absorber arc at a given time, and (3) returns a value for each mesh element

representing the absorber volume fraction in that element (ranging from 0 to 100 where 0 is no

absorber and 100 is pure absorber).

4.3.1 Use of PatternedHexMeshGenerator MeshMetaData

The MultiControlDrumFunction object relies on a series of MeshMetaData generated by

PatternedHexMeshGenerator objects that had specified generate_core_metadata = true. The

metadata includes information about the control drums located in the core:

• control_drum_positions: a vector of control drum center positions (i.e., x and y

coordinates). This MeshMetaData can also be outputted as an ASCII file by setting

generate_control_drum_positions_file as true and providing position_file.

• control_drum_angles: a vector of the azimuthal angle (in degrees) of the control

drum center position to the center of the core.

• control_drums_azimuthal_meta: a two-dimensional vector containing the sorted

azimuthal angles of nodes of each individual control drum.

Figure 4-4 depicts the ordering rule for control drum positions; they are ordered from 1 to N based

on azimuthal angle from the core center. In addition, assign_control_drum_id can be set as

true so that the control drum inputs meshes can be indexed using an element extra integer called

control_drum_id. As illustrated, the control_drum_id is indexed based on the azimuthal

angles of the control drums.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 26

Figure 4-4. A schematic drawing the indexing rule of control_drum_id in the

PatternedHexMeshGenerator object.

4.3.2 MultiControlDrumFunction Rotation of Control Drums

MultiControlDrumFunction is a MOOSE Function object that assigns values for the absorber

volume fraction in each element of an identified control drum. This object is capable of handling

multiple control drums within a single mesh. Referring back to Figure 4-1, a control drum typically

has a cylindrical geometry with an outer ring containing both absorber (yellow) and reflector (blue)

sections. Using the MultiControlDrumFunction object, the rotation of the absorber section can

be simulated. The entire ring needs to be contained within a single block. The Function object

creates a time- and space-dependent function to represent the volume percentage of the absorber in

this ring block. The function is intended to work with either FunctionAux to assign values to an

elemental auxiliary variable, or GenericFunctionMaterial to assign values to a material

property. There are three possible scenarios at a given time point:

• If the entire mesh element is within the absorber section, the function value is 100

(percent absorber);

• If the entire mesh element is within the reflector section, the function value is 0 (percent

absorber);

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 27 ANL/NSE-21/43

• If the mesh element is intercepted by the actual absorber-reflector boundary, the function

value is between 0 and 100 and equal to the volume percentage of the absorber part in that

mesh element.

To simulate the rotation of the control drums, a set of parameters are needed for each control drum

(Table 4-1).

Table 4-1. Geometry parameters needed for MultiControlDrumFunction

start_angle
the azimuthal angle of the starting position of the absorber section at the

beginning of the time.

angle_range the azimuthal angle range of the absorber section.

angular_speed

the rotation speed of the control drum in degree per second (positive

values mean counterclockwise rotation; negative values mean clockwise

rotation.)

When there are multiple control drums in the reactor core mesh to be simulated, it is important to

determine the mesh domain of each control drum in order to utilize the aforementioned algorithm

to assign the function values for all the involved control drums. Two options are available for this

procedure. When use_control_drum_id is true, this MultiControlDrumFunction can use

the element extra integer control_drum_id in the mesh to determine the domain of each control

drum. Please refer to Section 4.3.1 for details how control_drum_id is assigned. If

use_control_drum_id is false, the domain of each control drum is determined based on the

nearest control drum position. To be specific, for each element in the core mesh, the distances

between the element centroid and all the involved control drum positions are calculated. The

element belongs to the domain of the control drum that is nearest to the element centroid.

Figure 4-5 (top left) depicts a core mesh containing multiple control drums as colored in brown

with pink boundary representing the ring along which the absorber rotates. The top right figure

depicts the control drum id (an extra element integer ranging from 1 to 12) as assigned by

PatternedHexMeshGenerator based on position relative to the core center (i.e.,

use_control_drum_id = true). The bottom left figure shows the control drum domains

determined by MultiControlDrumFunction based on nearest point algorithm and control drum

positions (i.e., use_control_drum_id = false). Note that the two control drum domain

determination approaches lead to consistent results. The bottom right figure shows the returned

absorber fraction (ranging from 0 to 100) in each element of each control drum at a given point in

time. Red depicts pure absorber, and blue depicts no absorber.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 28

Figure 4-5. An example of control drums simulated by MultiControlDrumFunction object.

4.4 Current Limitations

Currently, because the functionalities of the MultiControlDrumFunction must rely on the

metadata from PatternedHexMeshGenerator, only the reactor core meshes generated by

PatternedHexMeshGenerator can be simulated. That is, the rotation of a standalone control

drum mesh generated by PolygonConcentricCircleMeshGenerator cannot be simulated

using this approach due to the absence of essential metadata. Additionally, due to the limitation in

input mesh types of PatternedHexMeshGenerator, the control drum geometry must be

contained within a single outer hexagon. Other shapes may be supported in the future if needed.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 29 ANL/NSE-21/43

Also, this Function object only provides a mean to quantitatively compute and assign volume

fraction values within the MOOSE framework. The usage of the material volume fractions has not

been thoroughly tested with a Griffin input.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 30

5 Reporting ID Capability

5.1 Reactor Analysis Motivation

The concept of reporting ID was devised to streamline post-processing for typical reactor cores

with structured layout. Typical reactor cores have a hierarchical structure consisting of multiple

levels: pin, assembly, core, and axial plane. By assigning corresponding IDs for those levels,

referred to the reporting ID here, the regions of interest can be uniquely specified. Thus, the user

can easily tally reactor component-wise values, such as pin-by-pin power distribution. The

reporting ID capability was embedded into the MOOSE mesh generation capability for Cartesian

and hexagonal geometries. For mesh elements belonging to the individual components in each

hierarchical level, a reporting ID of the corresponding level is assigned during the mesh generation

process using the extra element integer ID function available in MOOSE.

5.2 Assigning Pin, Assembly and Plane Reporting IDs

For typical Cartesian and hexagonal cores, reporting IDs can be setup in the hierarchical mesh build

process from the 2D pin to the 3D core. The reporting IDs for individual pins can be assigned when

assemblies are built because the IDs for pin level are uniquely determined from the pin arrangement

within each assembly type. Similarly, the assembly reporting IDs are assigned in the core

construction process. In order to implement the reporting ID capability for pin and assembly levels,

the existing mesh generators constructing lattice structure were extended by adding the

functionality of ID assignment for each input components in pin or assembly lattice structures.

For Cartesian lattices, CartesianIDPatternedMeshGenerator was implemented by extending

the existing lattice mesh generator named PatternedMeshGenerator in the MOOSE framework.

This new mesh generator adopts the existing input structures of PatternedMeshGenerator

generator for geometry building and uses additional keywords to control the reporting ID

assignment. First, a user can select an ID assignment scheme using assign_type, and the following

schemes are currently available:

• cell (default): Assign IDs for each component in lattice in sequential order.

• pattern: Assign IDs for each input component type.

• manual: Assign IDs based on user-defined mapping defined in id_pattern.

These assignment options are clearly illustrated in Figure 5-1. The name of reporting ID is provided

through id_name depending on the hierarchical level of component. For example, pin_id or

assembly_id is selected here for assembly or core generations, respectively.

For hexagonal lattices, HexIDPatternedMeshGenerator was implemented on top of

PatternedHexMeshGenerator by adding the additional keywords for controlling the reporting ID

generation as shown in Figure 5-2. The input structure of constructing the hexagonal lattice is

reused here, and the same input keywords of the Cartesian version are used to control the reporting

IDs. Note that separate reporting IDs are generated for the elements on duct regions as shown in

Figure 5-2. This allows the user to easily post-process the detailed solutions of interests such as the

heating distributions on assembly duct regions. In the double duct structures of control assembly

design of SFRs, for example, each duct region has a separate reporting ID.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 31 ANL/NSE-21/43

Note that these generators can be used for both assembly and core generations as illustrated in

Figure 5-3 and Figure 5-4. Once the pin mesh information is created, the assemblies are generated

with pin ID assignment. Then, the 2D core is assembled by merging the assemblies. Note that the

pin ID assignment is readily available in the resulting 2D core mesh because the pin IDs specified

in the assembly mesh data is replicated in this process. In this stage, additional assembly IDs are

given for individual assemblies on the core lattice.

[Mesh]
 [assembly]
 type = CartesianIDPatternedMeshGenerator
 inputs = ‘pin0 pin1’
 pattern = ‘1 0 0 1;
 0 0 1 0;
 0 1 0 0;
 1 0 0 1’
 assign_type = ‘cell’ # default
 id_name = ‘pin_id’
 []
[]

[Mesh]
 [assembly]
 type = CartesianIDPatternedMeshGenerator
 inputs = ‘pin0 pin1’
 pattern = '1 0 0 1;
 0 0 1 0;
 0 1 0 0;
 1 0 0 1’
 assign_type = ‘pattern’
 id_name = ‘pin_id’
 []
[]

[Mesh]
 [assembly]
 type = CartesianIDPatternedMeshGenerator
 inputs = ‘pin0 pin1’
 pattern = ‘1 0 0 1;
 0 0 1 0;
 0 1 0 0;
 1 0 0 1’
 assign_type = ‘manual’
 id_pattern = '0 0 1 1;
 0 0 1 1;
 2 2 3 3;
 2 2 3 3’
 id_name = ‘pin_id’
 []
[]

Figure 5-1. Reporting ID Generation for Cartesian Geometry

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 32

[Mesh]
 [assembly]
 type = HexIDPatternedMeshGenerator
 inputs = 'cell cell2'
 pattern_boundary = hexagon
 pattern = ' 1 0 1;
 0 0 0 0;
 1 0 0 0 1;
 0 0 0 0;
 1 0 1'
 hexagon_size = 5.2
 duct_sizes = '2.4 2.5'
 duct_intervals = '1 1'
 id_name = 'pin_id'
 assign_type = ‘cell’
 []
[]

Figure 5-2. Reporting ID Generation for Hexagonal Geometry

[Mesh]
 [asssembly1]
 type = CartesianIDPatternedMeshGenerator
 inputs = 'pin0 pin1'
 pattern = ' 1 0 0 1;
 0 1 1 0;
 0 1 1 0;
 1 0 0 1'
 assign_type = 'cell'
 id_name = 'pin_id'
 []
 [assembly2]
 type = CartesianIDPatternedMeshGenerator
 pattern = ' 1 1 1 1;
 1 0 0 1;
 1 0 0 1;
 1 1 1 1'
 assign_type = 'cell'
 id_name = 'pin_id'
 []
 [core]
 type = CartesianIDPatternedMeshGenerator
 inputs = 'asssembly1 assembly2'
 pattern = '0 1;
 1 0'
 assign_type = 'cell'
 id_name = 'assembly_id'
[]

[]

Pin ID

Assembly ID

Figure 5-3. Illustration of Reporting ID Generation for Pins and Assemblies in Cartesian Lattice

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 33 ANL/NSE-21/43

[Mesh]
 [assembly]
 type = HexIDPatternedMeshGenerator
 inputs = 'cell cell2'
 pattern_boundary = hexagon
 pattern = ' 1 0 1;
 0 0 0 0;
 1 0 0 0 1;
 0 0 0 0;
 1 0 1
 hexagon_size = 2.6
 duct_sizes = '2.4 2.5'
 duct_intervals = '1 1'
 id_name = 'pin_id'
 assign_type = ‘cell’
[]

 [core]
 type = HexIDPatternedMeshGenerator
 inputs = 'assembly'
 pattern_boundary = none
 pattern = '0 0;
 0 0 0;
 0 0'
 generate_core_metadata = true
 id_name = 'assembly_id'
 assign_type = 'cell'
 []
[]

Pin ID

Assembly ID

Figure 5-4. Illustration of Reporting ID Generation for Pins and Assemblies in Hexagonal Lattice

The default ID numbering for assign_type = cell begins at 0 in the top left corner. The ID value

increments by one as the pattern is traversed left to right, row by row. The default ID numbering

for assign_type = pattern matches the pattern numbering shown in the pattern input.

In some cases, a user may want to exclude certain regions from being labeled with an ID, for

example dummy regions that will later be deleted. This can be accommodated by listing mesh

objects in the exclude_id input parameter; IDs will not be assigned to these mesh objects. An

example of exclude_id is shown in Figure 5-5. This option currently works only with assign_type

= cell.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 34

[Mesh]
 [assembly]

 type = CartesianIDPatternedMeshGenerator

 inputs = ‘pin0 pin1 dummy’

 pattern = ‘2 2 0 1;

 2 0 1 0;

 0 1 0 0;

 1 0 0 1’

 assign_type = ‘cell’

 id_name = ‘pin_id’

 exclude_id = ‘dummy’

[]

[assembly_block_deletion]

 type = BlockDeletionGenerator

 input = ‘assembly’

 block = 9999 # dummy

 new_boundary = ‘zagged’

[]

[]

Reporting ID w/o exclude_id

Reporting ID w/ exclude_id

Figure 5-5. Illustration of auto-numbering using exclude_id option

For 3D cases, an additional reporting ID for axial planes can be optionally introduced. The elements

in each pin and axial segment can be uniquely specified through the pin, assembly and plane IDs

which allow 3D pin-wise distributions to be tallied. For specifying the plane reporting IDs,

PlaneIDGenerator was implemented, and a sample case is shown in Figure 5-6. Note that this

generator only works for 3D extruded geometries where the concept of axial layer is valid. This

generator takes a 3D mesh data and its axial layer structure as input. This axial layer structure given

in z_layers contains a list of z-coordinates defining each layer from bottom to top. If there are N

planes, N+1 coordinate points should be defined here. If each axial plane is uniformly sub-divided

into layers during the 3D extrusion, users may optionally assign distinct reporting IDs to individual

sub-planes by using the z_sublayers option to defines the number of sub-layers in each plane to be

assigned unique IDs. This is an array of integers corresponding to each plane.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 35 ANL/NSE-21/43

[Mesh]
...
[core_3d]
 ...
[]
[set_plane_id]
 type = PlaneIDGenerator
 input = ‘core_3d’
 z_layers = ‘0.0 2.0 4.0’
 id_name = ‘plane_id’
[]

[]

Plane ID

Figure 5-6. Illustration of Reporting ID Generation for Plane

5.3 Assigning Depletion IDs

Depletion calculation using Griffin require depletion IDs to specify unique depletion zones where

the composition changes over depletion time steps. By making use of the reporting IDs together

with the material IDs, the depletion IDs can be automatically prepared for Cartesian and hexagonal

cores. For a pin-level depletion case, the individual pins can be identified by the pin and assembly

IDs, and the detailed depletion regions within a pin can be further divided by material IDs. Thus,

the depletion IDs for the entire problem domains can be specified by finding the unique

combinations of assembly, pin and material IDs. For assembly-wise depletion, the user can set up

the depletion IDs by combining the assembly and material IDs. The described capability was

implemented in DepletionIDGenerator. As shown in Figure 5-7, id_names lists integer ID names

used for setting up the depletion zones. Note that the material ID does not need to be defined in the

list because it is included by default. The level of details in depletion zones can be controlled by

the integer IDs defined here. For example, one can set up pin-by-pin and axial layer-by-layer

arrangement of depletion zone by specifying those three IDs: pin_id, assembly_id and plane_id.

Users may optionally provide a list of material IDs to be excluded in the depletion ID generation.

For example, a non-fuel region can be excluded in the depletion ID generation using

exclude_material_id, which creates a more concise depletion ID arrangement. For those materials

listed in exclude_material_id, the depletion ID is set to zero because the depletion ID should be

assigned for the entire region even if not used in the actual depletion calculation.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 36

[Mesh]
...

 [depletion_id]
 type = DepletionIDGenerator
 input = ‘core’
 id_names = ‘pin_id assembly_id’
 exclude_material_id = ‘3 4’ # 3:clad 4: coolant
 []
[]

Figure 5-7. Depletion ID Generation using Reporting IDs

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 37 ANL/NSE-21/43

6 Core Periphery Meshing Capability

6.1 Reactor Analysis Motivation

The outermost assemblies in hexagonal reactor cores are often surrounded by a circular / cylindrical

peripheral zone as shown in red in Figure 6-1. While this zone is sometimes ignored in reactor

physics analysis, it should be included for completeness and to perform ex-core shielding

calculations. This zone takes on an irregular shape as it is the area between the outer cylinder and

the jagged outer core boundary. Typically, the user is required to mesh this zone using an external

meshing tool (e.g., Cubit). A generic triangle mesher should be implemented in MOOSE

framework to handle meshing of this geometry.

Figure 6-1: Reactor core geometry with meshed core periphery region (Cubit).

6.2 Triangle Licensing Compatibility Issues

It was quickly determined that while extremely useful, writing a new triangle routine specifically

for the MOOSE framework would be a large undertaking and not within scope of this project.

Therefore, leveraging an open-source triangle mesher would be the best path to success. The

primary challenge with leveraging an external code is ensuring that the license for the external code

is compatible with MOOSE licensing. Due to the licensing of MOOSE itself, and especially of the

more restrictive related projects like BISON, Griffin, etc., any third-party code being used needs to

have a relatively open license that allows for integration, distribution, and redistribution under

MOOSE’s terms. This largely restricts the pool of possible tools to so-called “permissive” licenses,

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 38

such as BSD (BSD License, 2021), MIT (MIT License, 2021), and Apache (Apache License, 2021),

and potentially the GNU Lesser GPL license (LGPL License, 2021). Codes released under the

ordinary GNU GPL license (GPL License, 2021), or their own custom restrictive licenses, are

generally not compatible with MOOSE’s license and thus not options for this work. Several popular

open-source libraries including Triangle (Shewchuk, 2021), TetGen (TetGen, 2021), and gmsh

(Geuzaine & Remacle, 2021) were considered, but all but one were eliminated due to their licensing

requirements not being compatible with the MOOSE framework.

There are still several triangulation libraries available under permissive licenses, but additionally,

a third-party meshing library also needed the ability to mesh around “holes” in the meshing region.

Most of the libraries found would triangulate an entire enclosed region, but the use case for MOOSE

meshing required the ability to mesh an area around some existing mesh (e.g., a reactor geometry),

which additionally limited the library options. The poly2tri code (Hasse, 2021) was selected for

implementation into MOOSE after confirming license compatibility with the MOOSE framework

developers.

6.3 Core Periphery Triangulation Mesher

The poly2tri library is designed to take a simple 2D polygon region with an outer boundary

represented by a polyline and triangulate the region interior to that boundary. Optionally, the library

can also be given any number of “holes” within the outer boundary, which are also defined by

boundary polylines, and indicate regions within the outer boundary that should not be part of the

triangulation.

During triangulation, the library will by default use only the points given in the outer boundary

polyline and any hole boundary polylines to perform the triangulation, which can result in lower

quality triangles and lead to difficulty when using the triangulation in FEM calculations. The library

thus also allows for the input of any number of Steiner points, which are extra triangulation points

that can be used to help improve the quality of the triangulation.

The TriangulatedMeshGenerator (TMG) was created to connect the functionality of the poly2tri

library to the MOOSE mesh generation system. Since the motivation of this effort was to mesh the

region between a reactor fuel core and the core periphery (typically a cylinder), TMG was designed

to create a circular triangulation outer boundary and use the outer boundary of an existing

meshgenerator to define the boundary of a single hole region which the triangulation library will

exclude.

The outer circular boundary properties are implemented as parameters in MOOSE input and are

defined by the circle radius and the number of segments to discretize the circle into. The inner hole

boundary properties are also implemented as parameters in MOOSE input and are defined by the

meshgenerator object name and the corresponding outer boundary ID or name. TMG can also

optionally take additional circle radius/segment definitions between the core region and the outer

boundary to be used as Steiner points to help improve the quality of the triangles produced.

Figure 6-2 shows a simple example triangulation. The core is a simple GeneratedMeshGenerator

(GMG) square with a SideSetsAroundSubdomainGenerator to define an outer boundary sideset

that TMG can use. TMG accepts the generated mesh and the sideset name to define the hole region,

along with the properties for the outer circle boundary.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 39 ANL/NSE-21/43

[Mesh]
 [gmg] # simple internal core
 type = GeneratedMeshGenerator
 dim = 2
 nx = 2
 ny = 2
 xmin = -1
 xmax = 1
 ymin = -1
 ymax = 1
 []

 [gmg_boundary] # create outer boundary sideset
 type = SideSetsAroundSubdomainGenerator
 input = gmg
 block = 0
 new_boundary = gen_outside
 []

 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 1

 # inner boundary mesh input
 inner_boundary_mesh = gmg_boundary
 inner_boundary_name = gen_outside

 # outer circle boundary settings
 outer_circle_radius = 3
 outer_circle_num_segments = 20
 []
[]

Figure 6-2: Example TMG mesh, simple GMG core.

Figure 6-3 shows a more complex example core geometry, also created with several stitched GMG

meshes into a cartesian arrangement. This example also shows one of the main limitations with this

library, that although it does create a triangulation of the periphery, the triangles are not always of

the quality desired for FEM calculations and would benefit from a quality refinement step.

[Mesh]
 [gmg_center] # simple internal core
 type = GeneratedMeshGenerator
 dim = 2
 nx = 20
 ny = 20
 xmin = -0.5
 xmax = 0.5
 ymin = -0.5
 ymax = 0.5
 []

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 40

copied and stitched GMG meshes removed
for brevity

 [cmbn_boundary] # create outer boundary sideset
 type = SideSetsAroundSubdomainGenerator
 input = 'stiched_top_bottom'
 block = 0
 new_boundary = 'gen_outer'
 replace = true
 []

 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 20

 # inner boundary mesh input
 inner_boundary_mesh = cmbn_boundary
 inner_boundary_name = 'gen_outer'

 # outer circle boundary settings
 outer_circle_radius = 2
 outer_circle_num_segments = 50
 []
[]

Figure 6-3: Example TMG mesh, simple cartesian core.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 41 ANL/NSE-21/43

Figure 6-4 shows a hexagonal assembly geometry, created with the

PatternedHexMeshGenerator and loaded with FileMeshGenerator.

[Mesh]
 [hex_in] # imported detailed hex geometry
 type = FileMeshGenerator
 file = hex_geometry.e
 []

 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 2000

 # inner boundary mesh input
 inner_boundary_mesh = hex_in
 inner_boundary_id = 5001

 # outer circle boundary settings
 outer_circle_radius = 18
 outer_circle_num_segments = 50
 []
[]

Figure 6-4: Example TMG mesh, detailed hex assembly.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 42

Like Figure 6-3, Figure 6-4 also shows low quality triangles. Figure 6-5 shows the same hex core

with the addition of two rings of Steiner points to improve the quality of the triangles.

[Mesh]
 [hex_in] # imported detailed hex geometry
 type = FileMeshGenerator
 file = hex_geometry.e
 []

 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 2000

 # inner boundary mesh input
 inner_boundary_mesh = hex_in
 inner_boundary_id = 5001

 # outer circle boundary settings
 outer_circle_radius = 18
 outer_circle_num_segments = 50

 # extra steiner point circles
 extra_circle_num_segments = '200 100'
 extra_circle_radii = '16 17'
 []
[]

Figure 6-5: Example TMG mesh, detailed hex assembly with Steiner points.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 43 ANL/NSE-21/43

Figure 6-6 shows the example from Figure 6-5 extruded into 3D using MeshExtruderGenerator

as an example of compatibility of the triangulated mesh with additional mesh generators.

[Mesh]
 [hex_in] # imported detailed hex geometry
 type = FileMeshGenerator
 file = hex_geometry.e
 []
 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 2000
 # inner boundary mesh input
 inner_boundary_mesh = hex_in
 inner_boundary_id = 5001
 # outer circle boundary settings
 outer_circle_radius = 18
 outer_circle_num_segments = 50
 # extra steiner point circles
 extra_circle_radii = '16 17'
 extra_circle_num_segments = '200 100'
 []
 [extrude] # extrude into 3D
 type = MeshExtruderGenerator
 input = tmg
 num_layers = 5
 extrusion_vector = '0 0 20'
 []
[]

Figure 6-6: Example TMG mesh, detailed hex core with Steiner points, and extruded into 3D.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 44

Figure 6-7 shows an example of a multi-assembly core, consisting of 19 subassemblies with

different subassembly types created with the PatternedHexMeshGenerator.

[Mesh]
 [hex_in] # imported detailed hex geometry
 type = FileMeshGenerator
 file = mini_dummy_19sa_in.e
 []
 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 9990
 # inner boundary mesh input
 inner_boundary_mesh = hex_in
 inner_boundary_id = 5001
 # outer circle boundary settings
 outer_circle_radius = 130
 outer_circle_num_segments = 200
 []
[]

Figure 6-7: Example TMG mesh, multi-assembly core.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 45 ANL/NSE-21/43

Figure 6-8 shows an example of a full core mesh created with PatternedHexMeshGenerator

(SimpleHexagonGenerator was used for individual assembly inputs). This example shows the

meh generated with only the outer surface (left), and with the mesh with an extra ring of Steiner

points added (right), to show how the quality of the mesh can be improved over the default

behavior.

[Mesh]
 [full_core_in] # imported full core geometry
 type = FileMeshGenerator
 file = abtr_mesh.e
 []

 [tmg] # triangulate periphery
 type = TriangulatedMeshGenerator
 subdomain_id = 35

 # inner boundary mesh input
 inner_boundary_mesh = full_core_in
 inner_boundary_name = core_out

 # outer circle boundary settings
 outer_circle_radius = 150
 outer_circle_num_segments = 50

 # extra steiner point circles
 extra_circle_num_segments = '100' # right picture only
 extra_circle_radii = '137' # right picture only
 []
[]

Figure 6-8: Example TMG mesh, full core with (left) only outer boundary nodes, and (right) ring

of Steiner points added.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 46

6.4 Other Uses of the Triangulation Mesher

This mesh generator was designed for a relatively specific use case of meshing the area between an

existing reactor core geometry and a cylindrical periphery, but the generator could be further

expanded. The assumed cylindrical boundary could be extended to allow multiple generated

boundary shapes, to accept a polyline as input for an external boundary that could have been

generated from an external tool, or to accept an existing mesh generator and boundary ID similar

to the internal core boundary.

This mesh generator was also designed based on the assumption that the entire core geometry would

already be fully meshed and would be input into the triangulation library as a single “hole”, but that

could also be extended. The library supports triangulation around multiple holes, so the generator

could be extended to accept multiple existing mesh generators and boundary IDs. This could be

used for example in a core with multiple assemblies that did not have the region between the

assemblies already meshed. The individual assemblies could be specified as a collection of holes

to the library, and it would triangulate not only the areas from the core the periphery, but also all

of the empty regions between all of the individual assemblies.

6.5 Limitations and Recommendations

The most notable limitation of the poly2tri library is that it only performs triangulation using that

points that are already defined by the outer boundary and core boundary. This produces a valid

triangulation of the intended region, but not necessarily with triangles of sufficient quality for use

in FEM calculations. The library allows for the specification of Steiner points that can be used to

help improve quality, but these are entered manually to the library. The most useful addition to this

mesh generator would be a refinement algorithm that improves the quality of the triangles to a given

threshold. These algorithms often take and existing triangulation as input and go through the

process of improving any triangles that are below the quality threshold, so the implementation of

this mesh generator should serve as a good starting point for the implementation of such an

algorithm.

Given the limited triangulation functionality available in license-compatible open source products,

it is recommend that the MOOSE framework consider pursuing development of a native Delaunay

triangulation scheme to obtain high quality elements.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 47 ANL/NSE-21/43

7 Reactor Geometry Mesh Builder (RGMB) Capability

7.1 Reactor Analysis Motivation

Reactor analysts for conventional Cartesian and hexagonal reactor cores typically want to specify

both geometry and materials simultaneously, as these two parts of the input need to be mapped

together to specify the physics problem. Additionally, it is most natural to think of building up a

reactor core by pins, then assemblies, then cores. The previous tools described in this work are a

huge improvement for MOOSE physics analysts, but additional features are desired to hide

unnecessary meshing details from the user, incorporate language specific to reactor design, and

assign materials at the meshing stage to abstract away notions of blocks (which the user does not

need to know other than for purposes of material assignment). A series of new capabilities has been

developed to address these issues and further simplify meshing input for conventional Cartesian

and hexagonal reactor pins, assemblies, and cores.

7.2 Building a Repeated Reactor Geometry

Mesh generators have been built that take input in a style preferred by reactor analysts to first define

Pins, combine Pins into Assemblies, and finally combine Assemblies into a Core. These

MeshGenerators were designed and developed to make use of the existing meshing capabilities in

MOOSE and simplify the input required for reactor applications. To help enable this, the MOOSE

development team implemented a “subgenerator” capability for MeshGenerators that allows a

MeshGenerator to itself call another and have the generated mesh and properties accessible between

the two. A global parameters mesh block is used to define dimensionality (2D or 3D), grid style

(Cartesian or hexagonal), assembly pitch, and axial geometry and intervals. These properties are

assumed to be common across the core and will be inherited by every subsequent pin and assembly.

Material definitions and associations are made at the same time as the pin cell mesh is defined, and

this material information is automatically propagated throughout the mesh building process,

including 3D extrusion. These three utilities (which call other utilities developed in this work

behind the scenes) can generate a full core pin by pin mesh, with automatic ids set for pin, assembly,

and planes, as well as material assignment embedded in the mesh. Mesh metadata and extra element

integers are heavily leveraged to enable this capability. 3D extrusion may be performed at the pin

cell, assembly, or core level. Sidesets are automatically defined for pin, assembly and core outer

boundaries, as well as the top and bottom surfaces (for 3D meshes).

A brief discussion follows of each of the new mesh generators.

7.2.1 GlobalMeshParams

A Mesh block calling the GlobalMeshParams type is required to begin the RGMB procedure.

The input options for this mesh generator are as follows.

GlobalMeshParams

• dim: Number of dimensions of the final mesh (Options: 2 or 3, default is 2)

• geom: Type of geometry (Options: “Square” or “Hex”, default is “Square”)

• assembly_pitch: Flat-to-flat size of the assembly's outermost boundary

• axial_regions: Array of heights of the axial regions (not required for 2D meshes)

• axial_mesh_intervals: Array of the number of intervals for each axial region in axial_regions (not

required for 2D meshes)

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 48

• procedural_subdomain_assignment: Whether the subdomain IDs should be procedurally

generated (true) or derived from region ids (false). If true, each meshing subinterval (radially and

axially) will be assigned a subdomain ID that is unique to that pin/assembly type. If false, each

meshed subinterval (radially and axially) will be assigned a subdomain id identical to the assigned

region ID. (Options: true or false, default is false)

The function of this object is to build an empty (null) mesh object with metadata that can be

passed into subsequent mesh generators. Specification of the common parts of the geometry in

one location reduces user input errors and ensures axially conformal meshes. This object also

ensures that core is defined in a uniform grid based on the assembly_pitch which allows for easy

definition of irregular core boundary shapes.

Generally, users of the RGMB tool do not need to have awareness of subdomain IDs. However,

some further explanation is warranted on what the code is doing behind the scenes regarding

subdomain numbering. In order to handle the occasional situations where multiple blocks are

created for the center pin or background region (discussed in Table 3-1) of a pin cell, subdomain

IDs are created for each meshing subinterval, not just each zone. The generated subdomain IDs are

unique to a pin but will repeat if the pin is repeated in the geometry. The choice of

procedural_subdomain_assignment=true was introduced to allow the user to force unique numbers

for each of these subdomains rather than using the region ID assigned to that meshing interval.

Generally, it is convenient to simply use the same ID value for both region ID and subdomain ID.

7.2.2 PinMeshGenerator

After defining a mesh object with GlobalMeshParams, one may invoke PinMeshGenerator to

create instances of reactor “Pins”. A “Pin” is actually a pin cell containing concentric rings to

represent rodded fuel or other materials, a background region, a square or hexagonal boundary, and

optional duct regions. Ducts are also available in the case of needing to represent a homogenized

assembly (no concentric rings explicitly represented). The geometry parameters are very similar to

those required by PolygonConcentricCircleMeshGenerator, which is called behind the scenes.

In the case of square pins, TransformGenerator is also called to rotate the pins to the same

orientation that would be expected from ConcentricCircleMeshGenerator. Additionally, material

assignments are specified for each axial plane in the pin cell through an array of integers supplied

in region_ids. Materials are specified from the center of the pin outward, and from the bottom of

the pin up. Hence, the first row of the material IDs corresponds to axial bottom of the pin. Reactor

analyst terminology like “pitch” is used here. The user has the option to extrude to 3D if desired,

in which case FancyExtruderGenerator extrudes that mesh based on the specification in the

GlobalMeshParams. The axial layers are also assigned axial reporting IDs via PlaneIDGenerator.

This procedure is the same regardless of which RGMB MeshGenerator is used for the extrusion

process.

PinMeshGenerator

• global_params: The name of the GlobalMeshParams MeshGenerator.

• pin_type: A positive integer ID for this pin definition.

• pitch: The flat to flat size of the pin.

• num_sectors: The number of sectors each side of the pins mesh is divided into.

• ring_radii: An array of radii for any rings to have in the pin. (Optional)

• duct_radii: An array of apothem distances of the inner wall of any ducts. (Optional)

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 49 ANL/NSE-21/43

• mesh_intervals: An array of the number of intervals for each radial division of the pin starting

from the innermost ring and ending with the outermost duct. Needs to length equal to the number

of rings + the number of ducts + 1 for the region separating the rings and ducts.

• region_ids: An array of positive integer IDs given to each radial and axial region. The rows

indicate radially region and need to be of equal length to mesh_intervals, the columns indicate

axially region and need to be of equal length to axial_regions in the GlobalMeshParams. These

are set both in the element extra integers and as the subdomain ID for the region if the procedural

generation of subdomain IDs is not enabled.

• extrude: Whether to extrude at this step if this is to be a 3D mesh. (Options: true or false, default is

false)

• quad_center_elements: Whether to use quad center elements. If this option is set to false (meaning

tri elements used in the center) and procedural_subdomain_assignment =false, then the user must

define an inner most ring with a unique region ID and only one meshing interval. This is due to

the limitations in the exodus format in that only elements with the element type can have the same

subdomain ID. (Options: true or false, default is true)

The user should define all pin types in the problem in different mesh generator objects, and

differentiate them by unique integers in the pin_type card. This will be needed to propagate material

assignments during extrusion.

7.2.3 AssemblyMeshGenerator

Pin cells are patterned into an “Assembly” using AssemblyMeshGenerator. This mesh generator

calls the automatic reporting id patterned mesh generators (HexIDPatternedMeshGenerator,

CartesianIDPatternedMeshGenerator) to combine pins into an assembly. Ducts can be applied

around hexagonal patterns of pin cells and are currently disabled for Cartesian grids. Along with

the definition of ducts, hexagonal assemblies have the added requirement of the definition of a

background region. The background region is the region surrounding the array of hexagonal pins

and inside the inner boundary of any ducts. If no duct exists, the background region extends to the

outer boundary of the assembly. Any number of duct layers can be defined via the duct_radii

parameter, however the outermost duct will always terminate at the assembly boundary that is

defined in the GlobalMeshParams.

AssemblyMeshGenerator

• inputs: An array of the names of the pins that you want to reference in the pattern.

• assembly_type: A positive integer ID for this assembly definition.

• pattern: A 2D array of pins in inputs indicating location of the pins in the assembly. The shape of

the pattern must match the shape expected for the geometry type defined in GlobalMeshParams.

• background_intervals: The radial meshing intervals for the background region. (Required for

“Hex” geometry)

• background_regions_id: An array of the region IDs for each axial division of the background

region. (Required for “Hex” geometry)

• duct_radii: An array of sizes of ducts to place around the assembly, inside of the boundary, given

by apothem. (Option only for “Hex” geometry)

• duct_intervals: An array of the radial meshing intervals for the ducts. This parameter must be of

equal length to duct_radii. (Option only for “Hex” geometry)

• duct_region_ids: An array of the region IDs for each axial division of the ducts defined in

duct_radii. (Option only for “Hex” geometry)

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 50

• extrude: Whether to extrude at this step if this is to be a 3D mesh. (True or false, defaults to false)

During the stitching process of pins into an assembly, automatic pin numbering is applied and

stored in extra element integers labeled pin_id. The user has the option to extrude to 3D at this point

in the process if desired. In the case of the hexagonal assemblies, the background region and any

ducts defined are given the assembly type ID, and they are also given a pin type ID of the maximum

value of their integer type (uint_16) to designate them as not belonging to any pin. This is

designation is required during extrusion for material information propagation.

The user should define all assembly types in the problem in different mesh generator objects, and

differentiate them by unique integers in the assembly_type card. This will be needed to propagate

material assignments.

7.2.4 CoreMeshGenerator

Assemblies are patterned into a “Core” using the CoreMeshGenerator object. This mesh generator

calls the automatic reporting id patterned mesh generators (HexIDPatternedMeshGenerator,

CartesianIDPatternedMeshGenerator) to combine assemblies into a core. Unlike the

underlying patterned mesh generators, the CoreMeshGenerator object permits “empty” spaces in

the core map through use of a reserved name for a dummy assembly. This allows the user to bypass

definition of extra dummy assemblies and subsequent deletion. (Behind the scenes, this is what the

code is doing, but the user does not need to concern themself with this.)

CoreMeshGenerator
• inputs: An array of the names of the assemblies that you want to reference in the pattern. The array

can also include the empty_position_name.

• empty_position_name: The name used in "inputs" to indicate a dummy assembly position that

should be left empty. This can be treated the same as any real mesh name in the input.

• pattern: A 2D array of pins in "inputs" indicating location of the pins in the assembly. The shape

of the pattern must match the shape expected for the geometry type defined in GlobalMeshParams.

• extrude: Whether to extrude at this step if this is to be a 3D mesh. (Options: true or false, default is

false)

During the stitching process of assemblies into a core, automatic assembly numbering is applied

and stored in extra element integers called assembly_id. The user has the option to extrude to 3D

at this point in the process if desired. Once extrusion is performed, reporting IDs to identify the

plane are automatically stored in extra element integers called plane_id.

7.2.5 Automatic Sideset Generation

The MeshGenerator objects automatically assign a predictable sideset ID and name for the outer

boundary of the geometry, and top and bottom surfaces (if extrusion to 3D is requested). The

pin_type and assembly_type integer values are evaluated and used in the naming and numbering

process. Table 7-1 describes the sidesets which are autogenerated with these tools.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 51 ANL/NSE-21/43

Table 7-1. Description of auto-generated sidesets

Object Sideset Description Sideset ID Sideset Name

PinMeshGenerator Nodes comprising

the outer boundary

of a pin cell (hex or

square)

20,000 +

{pin_type}

‘outer_pin_

{pin_type}’

AssemblyMeshGenerator Nodes comprising

the outer boundary

of an assembly (hex

or square)

2,000 +

{assembly_type}

‘outer_assembly_

{assembly_type}’

CoreMeshGenerator Nodes comprising

the outer boundary

of a core (jagged

edge permitted, hex

or square lattice)

200 ‘outer_core’

PinMeshGenerator,
AssemblyMeshGenerator,
CoreMeshGenerator

Top surface of a 3D

mesh

201 ‘top’

PinMeshGenerator,
AssemblyMeshGenerator,
CoreMeshGenerator

Bottom surface of a

3D mesh

202 ‘bottom’

For example, if PinMeshGenerator has been given the input card pin_type = 6 input, the resulting

2D pin cell mesh will have an external boundary sideset called ‘outer_pin_6’ with ID 20006.

If AssemblyMeshGenerator has been given the input card assembly_type = 13, the resulting 2D

assembly mesh will have an external boundary sideset called ‘outer_assembly_13’ with ID 2013.

The CoreMeshGenerator external boundary sideset is 200.

If the mesh is extruded at any stage (Pin, Assembly, or Core), then additional sidesets 201 (‘top’)

and 202 (‘bottom’) are defined.

7.3 Cartesian RGMB Example

The following figure demonstrates the simplicity of defining a 3D Cartesian core containing 24

assemblies (3 assembly types), null spaces around the core perimeter, and each assembly contains

3 pin types with 3 axial zones. Less than 100 lines of input is required in this example and the

material mapping is already done and stored on each mesh element. Additionally, the reporting ids

for pin, assembly, and plane are automatically applied for ease of post-processing.

In this example, global parameters are first set to define a square lattice, the lattice pitch, and three

axial regions with 2 subintervals each. Then, three pin types are defined. The second row of the

table generates the 3 assembly types, and the third row of the table generates the core.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 52

[Mesh]
 [./gmp]
 type = GlobalMeshParams
 dim = 3
 geom = "Square"
 assembly_pitch = 7.10315
 axial_regions = '5.0 20.0 5.0'
 axial_mesh_intervals = '2 2 2'
 []

 [./pin1]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 1
 pitch = 1.42063
 num_sectors = 4
 ring_radii = '0.3818'
 region_ids = '1 2;
 11 12;
 1 2'
 mesh_intervals = '1 1'
 []

 [./pin2]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 2
 pitch = 1.42063
 num_sectors = 4
 region_ids = '3;
 13;
 3'
 mesh_intervals = '1'
 []
 [./pin3]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 3
 pitch = 1.42063
 num_sectors = 4
 ring_radii = '0.254 0.508'
 duct_radii = '0.68'
 region_ids = '4 1 2 5;
 12 11 12 15;
 4 1 2 5'
 mesh_intervals = '1 1 2 1'
 []

Pin Type 3

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 53 ANL/NSE-21/43

 [./amg]
 type = AssemblyMeshGenerator
 assembly_type = 1
 inputs = 'pin1 pin2 pin3'
 pattern = '1 1 0 1 1;
 1 2 0 2 1;
 0 0 2 0 0;
 1 2 0 2 1;
 1 1 0 1 1'
 []

 [./amg1]
 type = AssemblyMeshGenerator
 assembly_type = 2
 inputs = 'pin1 pin2 pin3'
 pattern = '1 1 1 1 1;
 1 1 1 1 1;
 1 1 1 1 1;
 1 1 1 1 1;
 1 1 1 1 1'
 []

 [./amg2]
 type = AssemblyMeshGenerator
 assembly_type = 3
 inputs = 'pin1 pin2 pin3'
 pattern = '1 1 1 1 1;
 1 0 0 0 1;
 1 0 2 0 1;
 1 0 0 0 1;
 1 1 1 1 1'
 []

Assembly Type 1

 [./cmg]
 type = CoreMeshGenerator
 inputs = 'amg amg1 amg2 empty'
 empty_position_name = empty
 pattern = '3 3 1 1 3 3;
 3 2 0 0 2 3;
 1 0 2 0 0 1;
 1 0 0 2 0 1;
 3 2 0 0 2 3;
 3 3 1 1 3 3'
 extrude = true

 []

[]

3D Core with Irregular Boundary Shape

Figure 7-1: 3D Cartesian core input and mesh built using MOOSE’s new reactor geometry mesh

builder.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 54

7.4 Hexagonal RGMB Example

The following figure demonstrates the simplicity of defining a 3D hexagonal core using the new

reactor geometry mesh builder. The 55-assembly core contains 3 assembly types and null spaces,

and each assembly contains up to 3 pin types. Less than 120 lines of input is required and the

material mapping is already done and stored on each mesh element. Additionally, the reporting ids

for pin, assembly, and plane are automatically applied for ease of post-processing.

The multi-page figure begins on the following page.

The first row of the figure depicts the setting of global parameters using the GlobalMeshParams

mesh generator, and the definitions of 3 pin types (labeled with unique pin_type values 1, 2, and

3). The material ids for each axial plane are assigned in the region_id input, which has 3 rows since

there are 3 axial regions in the input GlobalMeshParams object. The meshes are 2D at this point

but store all the necessary metadata for extrusion and material mapping.

The second row of the figure depicts the creation of 3 assembly types (labeled with unique

assembly_type values 1, 2, and 3). Note the addition of background and duct zones and materials.

The assembly pitch was inherited from the mesh metadata on the pin inputs. A graphic of the first

assembly mesh is shown as generated by the mesh generator (vertex up). The connection between

the assembly pattern and the mesh can be seen more easily by rotating this figure 90 degrees in the

clockwise direction.

The third row of the figure depicts the creation of the core including axial extrusion. Note the ability

to slot in dummy assemblies which the code generates and deletes automatically. At the end of this

step, a 3D mesh exists with material IDs assigned on each subdomain, as well as reporting IDs and

sidesets for later boundary condition assignment.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 55 ANL/NSE-21/43

[Mesh]
 [./gmp]
 type = GlobalMeshParams
 dim = 3
 geom = "Hex"
 assembly_pitch = 7.10315
 axial_regions = '5.0 20.0 5.0'
 axial_mesh_intervals = '2 2 2'
 []

 [./pin1]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 1
 pitch = 1.42063
 num_sectors = 6
 ring_radii = '0.3818'
 region_ids = '1 2;
 11 12;
 1 2'
 mesh_intervals = '1 1'
 []

 [./pin2]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 2
 pitch = 1.42063
 num_sectors = 6
 region_ids = '3;
 13;
 3'
 mesh_intervals = '1'
 []

 [./pin3]
 type = PinMeshGenerator
 global_params = gmp
 pin_type = 3
 pitch = 1.42063
 num_sectors = 6
 ring_radii = '0.254 0.508'
 duct_radii = '0.68'
 region_ids = ' 4 1 2 5;
 14 11 12 15;
 4 1 2 5'
 mesh_intervals = '1 1 2 1'
 []

Pin Type 3.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 56

 [./amg]
 type = AssemblyMeshGenerator
 assembly_type = 1
 inputs = 'pin1 pin2 pin3'
 pattern = ' 1 0 1 ;
 0 2 2 0;
 1 0 2 0 1;
 0 2 2 0;
 1 0 1'
 background_intervals = 1
 background_region_id = '30
 31
 30 '
 duct_radii = '3.5'
 duct_intervals = '1'
 duct_region_ids = '40;
 41;
 40'
 []

 [./amg1]
 type = AssemblyMeshGenerator
 assembly_type = 2
 inputs = 'pin1 pin2 pin3'
 pattern = ' 1 1 1 ;
 1 1 1 1;
 1 1 1 1 1;
 1 1 1 1;
 1 1 1'
 background_intervals = 1
 background_region_id = '30
 31
 30 '
 duct_radii = '3.5'
 duct_intervals = '1'
 duct_region_ids = '40;
 41;
 40'
 []

 [./amg2]
 type = AssemblyMeshGenerator
 assembly_type = 3
 inputs = 'pin1 pin2 pin3'
 pattern = '1 1 1;
 1 0 0 1;
 1 0 2 0 1;
 1 0 0 1;
 1 1 1'
 background_intervals = 2
 background_region_id = '30
 31
 30 '
 duct_radii = '3.5'
 duct_intervals = '1'
 duct_region_ids = '40;
 41;
 40'
 []

Assembly Type 1
(to more easily visualize the pattern, rotate

clockwise by 90 degrees)

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 57 ANL/NSE-21/43

[./cmg]
 type = CoreMeshGenerator
 inputs = 'amg amg1 amg2 empty'
 empty_position_name = empty
 pattern = '3 1 1 1 3;
 1 0 1 1 0 1;
 1 1 0 2 0 1 1;
 1 1 2 0 2 2 1 1;
 3 0 2 2 0 2 2 0 3;
 1 1 2 2 0 2 1 1;
 1 1 0 2 0 1 1;
 1 0 1 1 0 1;
 3 1 1 1 3'
 extrude = true
 []

[]

3D Core with Irregular Boundary Shape

Figure 7-2. 3D Hexagonal core input and mesh built using MOOSE’s new reactor geometry mesh

builder.

7.5 Limitations and Recommendations

The RGMB capability in its current form lacks some capabilities that are believed to be needed in

the future. The most important of these limitations is that it currently does not perform conformal

meshing checks or fix an attempt to stitch non-conformal meshes. The responsibility is on the user

to ensure pins and assemblies can be stitched together. Generally, non-conformal mesh stitching is

an issue when assemblies with different numbers of pins neighbor each other, but the issue can be

avoided if the user adjusts meshing interval settings in the constituent assembly meshes.

Regardless, this has been identified as an important area of future work. Another limitation is the

asymmetric capability of assembly ducts. While they are only currently an option for hexagonal

assemblies, the capability should be added to accommodate assembly ducts in Cartesian assemblies

as well. However, this would require the development of an unrelated MeshGenerator for

concentric squares and the focus of this work is on the application to fast reactor geometries. Lastly,

neither the PinMeshGenerator nor the AssemblyMeshGenerator currently work with

SimpleHexagonGenerator which may be preferred for defining simple cores.

Additional upgrades needed include the ability to include control drums in the core, the ability to

collapse subdomain IDs at the end automatically (not needed once materials have been assigned),

and development of a consistent naming/numbering scheme for sidesets. The sidesets here are

generated only on the external boundaries, and these may not be sufficient for all physics

calculations.

Depending on user feedback, some input names may be hidden in the future to streamline user input

and other, currently hidden, inputs may be added as optional parameters to enable greater user

control. The initial version only exposes the options needed to create symmetric pins and stitched

meshes for both geometries and handles the advanced and optional inputs internally.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 58

8 Miscellaneous Enhancements

Aside from the systematic improvements in MOOSE mesh generators and related objects as

discusses in the other chapters in this report, some miscellaneous updates have also been made to

enhance the functionalities of existing MOOSE mesh generators and to provide some utility tools

to help users to better use the meshing related features in MOOSE. These updates are summarized

in this chapter.

8.1 Updating of FancyExtruderGenerator

During the development of the control drum related objects and the reporting ID features, it was

found that the original version of FancyExtruderGenerator did not retain element extra integers

and subdomain/nodeset/sideset names during the extrusion procedure. Consequently, the

information assigned to the 2D mesh is lost if the user employed FancyExtruderGenerator to

extrude into 3D. In addition, FancyExtruderGenerator has a useful functionality called “swap”,

which allows the users to reassign subdomain IDs for different extruded layers. It is necessary to

expand this “swap” feature to the element extra integers.

The FancyExtruderGenerator was updated by adding the following new features:

• Retain all existing element extra integers of the input mesh during extrusion.

• Retain all existing subdomain, nodeset and sideset name maps of the input mesh during

extrusion.

• Enable element extra integer "swap", which is similar to the existing “subdomain_swaps”.

This update enables the implementation of a series of new features developed in this project that

are discussed in other chapters of this report, including reporting ID and control drum meshing and

manipulation. It also generally enhances the functionalities of FancyExtruderGenerator for other

applications.

8.2 Element Centroid Locater (2D 1st Order Elements)

During the mesh generator development, sometimes it is necessary to determine the center of mass

(i.e., centroid) of a mesh to help calculate other geometry parameters. Generally, the centroid

coordinate of a mesh can be calculated by means of averaging the centroid coordinates of all the

elements using element volumes (areas for 2D meshes) as weights. That is,

𝑥⃑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝑚𝑒𝑠ℎ =

1

𝑁
∑𝑥⃑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝑒𝑙𝑒𝑚 ∙ 𝑉𝑒𝑙𝑒𝑚

𝑁

𝑖=1

 Eq. 8-1

In libMesh, both centroid and volume of an element are defined as member functions of the Elem

class: libMesh::Elem::volume() and libMesh::Elem::centroid(). Theoretically, it should be

straightforward to apply Eq. 8-1 using existing member functions. However, the

libMesh::Elem::centroid() does not actually calculate an element’s center of mass. Instead, it only

calculates the average of all vertices of that element. This approach can calculate the centroid of a

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 59 ANL/NSE-21/43

triangular element (2D) or a tetrahedron element (3D) correctly. For other type of elements, the

centers of mass must be calculated using a different algorithm.

For a quadrilateral element, the real centroid coordinate can be calculated using the following steps:

(1) Divide the quadrilateral element into two triangles using one of its diagonals and find the

centroids of these two triangles using the arithmetic average of the three vertices (labelled

as points A and B).

(2) Divide the quadrilateral element into another two triangles using the other diagonal and find

the centroids of these two triangles using the arithmetic average of the three vertices

(labelled as points C and D).

(3) The intersect of the line segments AB and CD is the centroid of the quadrilateral element.

This algorithm has been implemented in the polygon mesh generator classes developed in this

project and can be used by other MOOSE programmers.

More generally, the following approaches can be used to calculate centroids of different types of

elements, which adopts Eq. 8-1 to expand the centroid algorithm of simple geometry element to

that of the complex ones (see Table 8-1).

Table 8-1. Generalized algorithm to calculate element centroids

Element Type Centroid Volume

TRI (𝑝⃑0 + 𝑝⃑1 + 𝑝⃑2)/3 |(𝑝⃑1 − 𝑝⃑0) × (𝑝⃑2 − 𝑝⃑0)|/2

QUAD Eq. 8-1 for two TRIs Summation of two TRIs

TET (𝑝⃑0 + 𝑝⃑1 + 𝑝⃑2 + 𝑝⃑3)/4 |(𝑝⃑0 − 𝑝⃑3) ⋅ [(𝑝⃑1 − 𝑝⃑3) × (𝑝⃑2 − 𝑝⃑4)]|/6

PYRAMID Eq. 8-1 for two TETs Summation of two TETs

PRISM Eq. 8-1 for three TETs Summation of three TETs

HEX Eq. 8-1 for two PRISMs Summation of two PRISMs

Generalized member functions MOOSE::PolygonGeneratorBase::centroid_calculator() and

MOOSE::PolygonGeneratorBase::volume_calculator() have been developed in a local repository

and may be merged into MOOSE after testing and optimization.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 60

9 Physics Code Verification of Developed Capabilities

To verify the mesh generators developed in this work were functioning properly, several physics

benchmark cases were set up using the new MOOSE mesh tools. Results were compared to pre-

existing results that used externally generated meshes from either CUBIT or Argonne’s Mesh Tools

system.

9.1 Griffin Verification: Homogenized Fast Reactor Example

The first example to demonstrate the functionality of the new MOOSE mesh tools involves

simulation of the Advanced Burner Test Reactor (ABTR) model (Shemon, Grudzinski, Lee,

Thomas, & Yu, 2015). This full-core reactor model features a 3-D core with 10 rings of hexagonal

assemblies, where each assembly is discretized into 12 axial layers. Figure 9-1 illustrates the top-

down and side view of reactor geometry. Each hexagonal prismatic region in the assembly is further

discretized into six triangular regions with equivalent block ids, and all reactor neutronics properties

are homogenized over these triangular prism elements. Furthermore, several assemblies in the

outermost ring have been deleted from the core. The exact core geometry specifications are based

on a mesh that was previously created by Argonne’s Mesh Tools system for neutronic analysis of

the ABTR problem. The goal of this section is to show close agreement in Griffin neutronics results

when the input mesh is defined by the new MOOSE mesh tools when compared to using a mesh

generated by Argonne’s Mesh Tools system. Section 9.1.1 discusses the exact mesh generation

process in MOOSE for this problem, and Section 9.1.2 defines relevant parameters used in the

Griffin neutronics simulation and compares the simulation results between using MOOSE mesh

tools and Argonne’s mesh tools as the input mesh. The Griffin input files discussed in this section

and in Section 9.2 are not included in this report but can be made available upon request. Moreover,

there are plans currently to include these input files into the main Griffin source code repository as

examples of how the mesh tools described in this report can be used to define geometry meshes for

representative reactor problems.

Figure 9-1. Top-down (left) and side (right) views of ABTR homogeneous model, generated by

Argonne’s Mesh Tools

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 61 ANL/NSE-21/43

9.1.1 ABTR Mesh Generation in New MOOSE Mesh Tools

The general steps for producing the input mesh for the ABTR problem in the new MOOSE mesh

tools can be summarized as follows:

1. Define each unique 2-D assembly

2. Define layout of assemblies in 2-D and dummy assembly deletion

3. Extrude 2-D geometry to 3-D

4. Define core sidesets

Note that this example was prepared prior to availability of the Reactor Geometry Mesh Builder

(which also does not currently permit usage of the SimpleHexagonGenerator mesh object used

here.) In step 1, each 2-D assembly with a unique block id is defined using the

SimpleHexagonGenerator type, which discretizes each assembly in the core into 6 triangular

prisms. Here, the block id of each assembly and the size of the hexagon is defined, and the dummy

assemblies which will be removed from the core layout are also defined in this section. An arbitrary

block id is given to the dummy assembly, which will be the input in step 2 to specify that assemblies

with this block id should be removed from the core layout. The code snippet for step 1 is shown

below, and each of the code blocks presented is contained within the overarching [Mesh] block.

For brevity, only two assemblies definitions are shown, but this step is repeated for each assembly

with a unique block id in the 2-D assembly layout.

[assembly1]
 type = SimpleHexagonGenerator
 hexagon_size = 7.3425
 hexagon_size_style = 'apothem'
 block_id = '1'
[]
[assembly2]
 type = SimpleHexagonGenerator
 hexagon_size = 7.3425
 hexagon_size_style = 'apothem'
 block_id = '2'
[]
... # Repeat for all other assemblies
[dummy]
 type = SimpleHexagonGenerator
 hexagon_size = 7.3425
 hexagon_size_style = 'apothem'
 block_id = '997'
[]

Figure 9-2. ABTR 2-D Assembly Definition Using SimpleHexagonGenerator

In step 2, the core layout of the assemblies provided in step 1 is defined using the

PatternedHexMeshGenerator type, and the code snippet for this step is shown in Figure 9-3.

Here, the outer sideset boundary of the core is defined as “core_out”, and the layout is specified

using the pattern parameter. It should be noted here that the values used to define the 2-D assembly

layout correspond to the index order of the assemblies defined in the inputs parameter. The exact

core layout of assemblies for this problem are chosen to mimic the layout of assemblies in the mesh

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 62

created by Argonne’s Mesh Tools, but this is by no means the only way that the layout of assemblies

can be defined. The current implementation of MOOSE mesh tools allows for a flexible definition

of the core layout and provides a straightforward way to re-shuffle these assemblies simply by

changing the value of the pattern block.

[core_lattice]
 type = PatternedHexMeshGenerator
 inputs = 'assembly31 assembly29 assembly30 assembly24 assembly25
 assembly26 assembly28 assembly16 assembly17 assembly18
 assembly19 assembly27 assembly23 assembly9 assembly10
 assembly11 assembly12 assembly13 assembly20 assembly22
 assembly15 assembly6 assembly7 assembly8 assembly21
 assembly14 assembly5 assembly3 assembly4 assembly1
 assembly2 assembly0 dummy'
 pattern_boundary = none
 external_boundary_name = core_out
 generate_core_metadata = false
 generate_control_drum_positions_file = false
 pattern = '32 32 31 31 31 31 31 31 32 32;
 32 29 29 30 30 30 30 30 29 29 32;
 31 29 27 27 28 28 28 28 27 27 29 31;
 31 30 27 26 26 26 26 26 26 26 27 30 31;
 31 30 28 26 21 21 25 24 21 21 26 28 30 31;
 31 30 28 26 21 13 20 19 18 17 21 26 28 30 31;
 31 30 28 26 22 14 7 12 11 10 16 23 26 28 30 31;
 31 30 28 26 23 15 8 3 6 5 9 15 22 26 28 30 31;
 32 29 27 26 21 16 9 4 1 2 4 8 14 21 26 27 29 32;
32 29 27 26 21 17 10 5 2 0 1 3 7 13 21 26 27 29 32;
 32 29 27 26 21 18 11 6 1 2 6 12 20 21 26 27 29 32;
 31 30 28 26 24 19 12 3 4 5 11 19 25 26 28 30 31;
 31 30 28 26 25 20 7 8 9 10 18 24 26 28 30 31;
 31 30 28 26 21 13 14 15 16 17 21 26 28 30 31;
 31 30 28 26 21 21 22 23 21 21 26 28 30 31;
 31 30 27 26 26 26 26 26 26 26 27 30 31;
 31 29 27 27 28 28 28 28 27 27 29 31;
 32 29 29 30 30 30 30 30 29 29 32;
 32 32 31 31 31 31 31 31 32 32'
[]
[del_dummy]
 type = BlockDeletionGenerator
 block = 997
 input = core_lattice
 new_boundary = core_out
[]

Figure 9-3. ABTR 2-D Core Lattice Definition and Dummy Deletion

In step 3, the FancyExtruderGenerator type is used to extrude the 2-D core into 3-D and specify

the core axial discretizations. Here, heights is used to indicate where axial discretizations occur in

the z-plane, and num_layers defines the number of axial subdivisions for each layer. top_boundary

and bottom_boundary represent the sideset ids given to top and bottom sidesets that result from the

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 63 ANL/NSE-21/43

3-D extrusion, and these ids will be used to define the core outer boundaries in Griffin along with

core_out in step 2. Finally, subdomain_swaps is used to set the block ids for each layer, since the

typical extrusion process preserves the same block ids from 2-D into each layer in 3-D. These block

ids are set in this specific manner to match the block ids set by Argonne’s Mesh Tools for this

problem, but once again these block ids can be defined in 3-D with a more ordered numbering.

Figure 9-4 shows the code snippet for step 3.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 64

[extrude]
 type = FancyExtruderGenerator
 input = del_dummy
 heights = '50.24 42.32 17.98 16.88 16.88 16.88 16.89 16.88 19.76 65.66 31.14 30.15'
 num_layers = '3 2 1 1 1 1 1 1 1 4 2 2'
 direction = '0 0 1'
 top_boundary = 998
 bottom_boundary = 999
 subdomain_swaps = ' 31 31;
 31 61 29 59 30 60 24 54 25 55 26 56 28 58 16 46 17 47
 18 48 19 49 27 57 23 53 9 39. 10 40 11 41 12 42 13 43
 20 50 22 52 15 45 6 36 7 37 8 38 21 51 14 44 5 35
 3 33 4 34 2 32;
 31 65 29 59 30 60 24 54 25 64 26 56 28 58 16 46 17 47
 18 48 19 49 27 57 23 53 9 39 10 40 11 62 12 42 13 43
 20 50 22 63 15 45 6 36 7 37 8 38 21 51 14 44 5 35
 3 33 4 34 2 32;
 31 65 29 84 30 85 24 80 25 64 26 81 28 83 16 74 17 75
 18 76 19 49 27 82 23 79 9 68 10 69 11 62 12 70 13 71
 20 77 22 63 15 73 6 36 7 66 8 67 21 78 14 72 5 35
 3 33 4 34 2 32;
 31 65 29 104 30 105 24 100 25 64 26 101 28 103 16 94 17 95
 18 96 19 49 27 102 23 99 9 88 10 89 11 62 12 90 13 91
 20 97 22 63 15 93 6 36 7 86 8 87 21 98 14 92 5 35
 3 33 4 34 2 32;
 31 65 29 124 30 125 24 120 25 64 26 121 28 123 16 114 17 115
 18 116 19 49 27 122 23 119 9 108 10 109 11 62 12 110 13 111
 20 117 22 63 15 113 6 36 7 106 8 107 21 118 14 112 5 35
 3 33 4 34 2 32;
 31 65 29 144 30 145 24 140 25 64 26 141 28 143 16 134 17 135
 18 136 19 49 27 142 23 139 9 128 10 129 11 62 12 130 13 131
 20 137 22 63 15 133 6 36 7 126 8 127 21 138 14 132 5 35
 3 33 4 34 2 32;
 31 169 29 167 30 168 24 162 25 163 26 164 28 166 16 155 17 156
 18 157 19 49 27 165 23 161 9 148 10 149 11 150 12 151 13 152
 20 158 22 160 15 154 6 36 7 146 8 147 21 159 14 153 5 35
 3 33 4 34 2 32;
 31 193 29 191 30 192 24 186 25 187 26 188 28 190 16 179 17 180
 18 181 19 49 27 189 23 185 9 172 10 173 11 174 12 175 13 176
 20 182 22 184 15 178 6 36 7 170 8 171 21 183 14 177 5 35
 3 33 4 34 2 32;
 31 193 29 212 30 213 24 208 25 187 26 209 28 211 16 202 17 203
 18 204 19 49 27 210 23 207 9 196 10 197 11 174 12 198 13 199
 20 205 22 184 15 201 6 36 7 194 8 195 21 206 14 200 5 35
 3 33 4 34 2 32;
 31 217 29 212 30 213 24 208 25 216 26 209 28 211 16 202 17 203
 18 204 19 49 27 210 23 207 9 196 10 197 11 214 12 198 13 199
 20 205 22 215 15 201 6 36 7 194 8 195 21 206 14 200 5 35
 3 33 4 34 2 32;
 31 247 29 245 30 246 24 240 25 241 26 242 28 244 16 232 17 233
 18 234 19 235 27 243 23 239 9 225 10 226 11 227 12 228 13 229
 20 236 22 238 15 231 6 222 7 223 8 224 21 237 14 230 5 221
 3 219 4 220 2 218'
[]

Figure 9-4. ABTR 3-D Extrusion Process

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 65 ANL/NSE-21/43

Finally, in step 4, the boundary sidesets are renamed as a single name “VOID”, in order to define

the core periphery as a single entity. This name can be used in Griffin directly to specify the

problem boundary conditions. Moreover, this avoids the need to track sideset ids directly from

Exodus files, which can be a cumbersome process especially in Argonne’s Mesh Tools where

boundary sideset id assignments can occur in a non-intuitive manner. Figure 9-5 shows the code

snippet for step 4.

[rename_sidesets]
 type = RenameBoundaryGenerator
 input = extrude
 old_boundary = 'core_out 998 999'
 new_boundary = 'VOID VOID VOID'
[]

Figure 9-5. ABTR Sideset Renaming Process

To illustrate the differences in how input files are laid out when the new MOOSE mesh tools and

Argonne’s Mesh Tools are used respectively, Figure 9-6 shows the [Mesh] block for these two

frameworks. In the case of MOOSE mesh tools, the mesh block is defined using internal MOOSE

mesh generators, while the mesh must be imported as a FileMeshGenerator from an Exodus file

when using Argonne’s Mesh Tools. In this light, any changes to the underlying mesh when running

downstream MOOSE App calculations can be made in a single step by directly modifying the input

file when MOOSE mesh tools are used. On the other hand, when external mesh generator platforms

such as Argonne’s Mesh Tools are used, changes to the underlying mesh are conducted in three

steps – first, by running the mesh generator application to create a PROTEUS-formatted mesh file,

second, converting to Exodus file format, and third, by running the MOOSE App on the updated

Exodus file.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 66

[Mesh]
 [assembly1]
 # From Figure 9-2
 []
 [assembly2]
 # From Figure 9-2
 []
 ...
 [dummy]
 # From Figure 9-2
 []
 [core]
 # From Figure 9-3
 []
 [del_dummy]
 # From Figure 9-3
 []
 [extrude]
 # From Figure 9-4
 []
 [rename_sidesets]
 # From Figure 9-5
 []
[]

[Mesh]
 [fmg]
 type = FileMeshGenerator
 file = mesh.e
 # mesh.e is produced externally in
Argonne Mesh Tools with a separate
syntax, not shown here. Conversion
utilities are required to convert the AMT
mesh to Exodus format to import here.
 []
[]

Figure 9-6. MOOSE Mesh block when using MOOSE mesh tools (left) vs. Argonne’s Mesh

Tools (right)

9.1.2 Griffin Neutronics Parameters for ABTR Problem and Comparison of Neutronics Results
between New MOOSE Mesh Tools and Argonne’s Mesh Tools

The Griffin code (Lee, et al., 2021) is used to simulate the neutronic behavior for the ABTR

problem, and both the new MOOSE mesh tools and Argonne’s Mesh Tools are used for mesh

generation in order to show that downstream calculations yield comparable results between these

two frameworks for mesh generation. Since Griffin is a MOOSE-based application, the Mesh

blocks defined in Figure 9-6 can be used directly in the Griffin input file. All other input blocks

that specify the neutronics problem parameters are kept the same between the two Griffin

simulation runs. More precisely, 33 energy groups are used to solve the steady-state neutronics

problem with a solver scheme that utilizes the self-adjoint angular flux (SAAF) formulation with

continuous finite element method (CFEM) and the discrete ordinates (SN) method. Diffusion

synthetic acceleration (DSA) with identical mesh and energy discretization as the transport solver

is used to accelerate problem convergence, and vacuum boundary conditions are applied to the core

periphery. 15 neutronics materials are present in the ABTR problem. Since these material

assignments are made in the Griffin input according to the block ids of the mesh elements, the block

id assignments in the mesh based on MOOSE mesh tools are made to be identical to the block id

assignments implemented by Argonne’s Mesh Tools. This ensures that the material assignment

block can be kept the same between the Griffin input files for these two mesh generation

frameworks.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 67 ANL/NSE-21/43

K-effective is used as a metric for comparing neutronics results between the MOOSE-based and

Argonne Mesh Tools-based frameworks for mesh generation. Table 9-1 summarizes the results

between these two frameworks and it can be seen that the two cases produce identical k-effective

values irrespective of the tool used to generate the input mesh. These results indicate that the two

mesh generation frameworks produce identical mesh discretizations for the homogeneous 3-D full-

core problem.

Table 9-1. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the ABTR Problem

Mesh

Generation Tool

Griffin Solver Scheme K-Effective

New MOOSE

Mesh Tools

SAAF-CFEM-SN with DSA

Diffusion Acceleration

1.036481

Argonne’s Mesh

Tools

SAAF-CFEM-SN with DSA

Diffusion Acceleration

1.036481

9.2 Griffin Verification: Heterogeneous Fast Reactor Assembly Example

Section 9.1 showed that equivalent neutronics results were achieved between Argonne’s Mesh

Tools and the new MOOSE mesh generators when defining the mesh for a homogeneous 3-D full

core problem with a hexagonal assembly lattice. In this section, neutronics verification is extended

to the 3-D heterogeneous assembly problem in order to show how the MOOSE framework meshing

enhancements can be applied to problems with circular pincell regions. Here, the assembly

geometry is based on a candidate lead-cooled fast reactor (LFR) assembly design (Grasso,

Levinsky, Franceschini, & Ferroni, 2019), which features a seven-ring pin lattice with an assembly

length of 353.42 cm and an axial discretization with 10 unique layers. Figure 9-7 shows the top-

down and side views of the mesh that was previously created with Argonne’s Mesh Tools for this

problem (Shemon, Yu, & Kim, 2020). Once again, the goal for this section is to replicate this mesh

as closely as possible with the internal MOOSE mesh generators described in this report, and to

show comparable neutronics results between traditional frameworks and new MOOSE-based

frameworks for mesh generation. Section 9.2.1 defines the necessary steps in the MOOSE input

file to generate the LFR assembly mesh, while Section 9.2.2 summarizes the neutronics results

between using the new MOOSE mesh tools and Argonne’s Mesh Tools as the input mesh. Finally,

Section 9.2.3 describes how the new MOOSE-based meshing capabilities can additionally be

implemented to define a separate coarse mesh that can be used for diffusion acceleration in

neutronics problems. This example was again developed prior to availability of the RGMB

capability which could streamline the mesh generation procedure shown here.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 68

Figure 9-7. Top-down view of entire assembly (left), zoomed top-down view of central pins

(middle), and side view (right) of the LFR heterogeneous assembly model, generated by

Argonne’s Mesh Tools

9.2.1 LFR Mesh Generation in New MOOSE Mesh Tools

The mesh generation process for the LFR problem follows a similar procedure as described in

Section 9.1.1, where the lattice pattern is used to define pins instead of assemblies in a ring pattern.

The following steps are taken to generate the LFR mesh using MOOSE mesh generators:

1. Define each unique 2-D pin

2. Define layout of pins in 2-D

3. Extrude 2-D geometry to 3-D

4. Define assembly sidesets

In step 1, each unique 2-D pin is defined using the PolygonConcentricCircleMeshGenerator

type, which discretizes the pin cell into a hexagon with a single pin and background region. The

code snippet for this step is shown in Figure 9-8, and is repeated for each pin in the problem with

a unique block id. For reference, Table 9-2 includes the definition of each of the input parameters

in the pin blocks. For this problem, ring and background block ids are set to match the block ids in

the mesh created by Argonne’s Mesh Tools. Defining numerous identical pins with different block

numbers is necessary in this case because this mesh was intended for use in hot channel factor

calculations whereby individual pin properties (e.g. materials) could be perturbed.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 69 ANL/NSE-21/43

[pin001]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '2 2 2 2 2 2'
 polygon_size = 0.67125
 ring_radii = '0.2020 0.4319 0.4495 0.5404'
 ring_intervals = '1 3 1 1'
 ring_block_ids = '0 129 2 130'
 background_intervals = 1
 background_block_ids = 4
 preserve_volumes = on
[]
[pin002]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6
 num_sectors_per_side = '2 2 2 2 2 2'
 polygon_size = 0.67125
 ring_radii = '0.2020 0.4319 0.4495 0.5404'
 ring_intervals = '1 3 1 1'
 ring_block_ids = '0 131 2 132'
 background_intervals = 1
 background_block_ids = 4
 preserve_volumes = on
[]
... # Repeat for all other pins

Figure 9-8. LFR 2-D Pin Definition Using PolygonConcentricCircleMeshGenerator

Table 9-2. Description of Parameters Used in Input Block for Pin Definitions in Figure 9-8

Input Parameter Description

num_sides Number of sides in background polygon shape

num_sectors_per_side Number of sectors for each side of background polygon

polygon_size Size of background polygon region

ring_radii Radii of rings in circular pin region

ring_intervals Number of subdivisions per ring in circular pin region

ring_block_ids Block id’s for each ring in circular pin region

background_intervals Number of subdivisions in background region

background_block_ids Block id’s for each background region subdivision

preserve_volumes Whether or not to preserve volume during pin discretization

Similar to the ABTR problem in Section 9.1.1, in step 2 the pin layout of the LFR assembly is

defined using the PatternedHexMeshGenerator type. The code snippet for this step is shown in

Figure 9-9. Since a duct region is present in this problem, duct properties are also defined with the

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 70

parameters duct_sizes, duct_block_ids, and duct_intervals. Once again, the exact pin layout for this

problem is chosen to mimic the layout of pins in the mesh created by Argonne’s Mesh Tools.

[assembly_lattice]
 type = PatternedHexMeshGenerator
 inputs = 'pin001 pin002 pin003 pin004 pin005 pin006 pin007 pin008 pin009
 pin010 pin011 pin012 pin013 pin014 pin015 pin016 pin017 pin018
 pin019 pin020 pin021 pin022 pin023 pin024 pin025 pin026 pin027
 pin028 pin029 pin030 pin031 pin032 pin033 pin034 pin035 pin036
 pin037 pin038 pin039 pin040 pin041 pin042 pin043 pin044 pin045
 pin046 pin047 pin048 pin049 pin050 pin051 pin052 pin053 pin054
 pin055 pin056 pin057 pin058 pin059 pin060 pin061 pin062 pin063
 pin064 pin065 pin066 pin067 pin068 pin069 pin070 pin071 pin072
 pin073 pin074 pin075 pin076 pin077 pin078 pin079 pin080 pin081
 pin082 pin083 pin084 pin085 pin086 pin087 pin088 pin089 pin090
 pin091 pin092 pin093 pin094 pin095 pin096 pin097 pin098 pin099
 pin100 pin101 pin102 pin103 pin104 pin105 pin106 pin107 pin108
 pin109 pin110 pin111 pin112 pin113 pin114 pin115 pin116 pin117
 pin118 pin119 pin120 pin121 pin122 pin123 pin124 pin125 pin126
 pin127'
 pattern_boundary = hexagon
 background_intervals = 1
 hexagon_size = 8.20825
 duct_sizes = '7.6712 8.0245'
 duct_sizes_style = apothem
 duct_intervals = '1 1'
 background_block_id = 4
 duct_block_ids = '257 258'
 external_boundary_id = 997
 pattern = '103 102 101 100 99 98 97;
 104 71 70 69 68 67 66 96;
 105 72 45 44 43 42 41 65 95;
 106 73 46 25 24 23 22 40 64 94;
 107 74 47 26 11 10 9 21 39 63 93;
 108 75 48 27 12 3 2 8 20 38 62 92;
 109 76 49 28 13 4 0 1 7 19 37 61 91;
 110 77 50 29 14 5 6 18 36 60 90 126;
 111 78 51 30 15 16 17 35 59 89 125;
 112 79 52 31 32 33 34 58 88 124;
 113 80 53 54 55 56 57 87 123;
 114 81 82 83 84 85 86 122;
 115 116 117 118 119 120 121'
[]

Figure 9-9. LFR Assembly 2-D Pin Lattice Definition

In step 3, the FancyExtruderGenerator type is once again used to extrude the 2-D core into 3-D

and specify the core axial discretizations. The extrusion process is identical to step 2 in Section

9.1.1. For brevity, the entire input to subdomain_swaps is not shown. However, for this problem,

each of the 259 block ids in each 2-D axial layer is remapped to a unique value so as to create the

same block id mapping with that of the mesh created by Argonne’s Mesh Tools.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 71 ANL/NSE-21/43

[extrude]
 type = FancyExtruderGenerator
 input = assembly_lattice
 heights = '10.07 30.79 6.56 85.85 1.52 106.07 1.51 12.13 5.05 93.87'
 num_layers = '1 3 1 9 1 20 1 2 1 9'
 direction = '0 0 1'
 top_boundary = 998
 bottom_boundary = 999
 subdomain_swaps = '0 0;
 0 259 1 260 2 261 ... ;
 0 518 1 519 2 520 ... ;
 0 777 1 778 2 779 ... ;
 0 1036 1 1037 2 1038 ... ;
 0 1295 1 1296 2 1297 ... ;
 0 1554 1 1555 2 1556 ... ;
 0 1813 1 1814 2 1815 ... ;
 0 2072 1 2073 2 2074 ... ;
 0 2331 1 2332 2 2333 ... ;
[]

Figure 9-10. LFR Assembly 3-D Extrusion Process

Finally, in step 4, the boundary sidesets are renamed so that the top, bottom, and side sidesets are

are renamed to ASSEMBLY_TOP, ASSEMBLY_BOTTOM, and ASSEMBLY_SIDE

respectively, as shown in Figure 9-11. These sideset names will be inputted directly into Griffin to

define boundary conditions for the neutronics problem.

[rename_sidesets]
 type = RenameBoundaryGenerator
 input = extrude
 old_boundary = '998 999 997'
 new_boundary = 'ASSEMBLY_TOP ASSEMBLY_BOTTOM ASSEMBLY_SIDE'
[]

Figure 9-11. LFR Assembly Sideset Renaming Process

9.2.2 Comparison of Griffin Neutronics Results between New MOOSE Mesh Tools and
Argonne’s Mesh Tools for LFR problem

Similar to Section 9.1.2, neutronics results for the LFR problem are compiled from the Griffin code

and summarized in Table 9-3. For this problem, 9 energy groups are used to solve the steady-state

neutronics problem with a solver scheme that utilizes the discontinuous finite element method

(DFEM) with the discrete ordinates (SN) method. 33 neutronics materials are present in the LFR

problem, and vacuum boundary conditions are applied to the top and bottom surfaces of the

assembly while reflecting boundary conditions are applied to the outer radial surfaces. Diffusion

acceleration is not leveraged for the simulations in this section but will be the topic of exploration

for Section 9.2.3. Both Argonne’s Mesh Tools and the new MOOSE mesh tools are used to define

the input mesh to Griffin. Table 9-3 highlights a 20pcm difference in the computed Griffin

eigenvalue between these two meshing frameworks. This slight discrepancy is due to the fact that

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 72

the mesh discretization scheme used in the background region between the outermost pins and the

duct differs between Argonne’s Mesh Tools and the new MOOSE mesh tools, and this disparity

can be seen by comparing the yellow background regions of the plots in Figure 9-12.

Table 9-3. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the LFR Assembly Problem

Griffin Solver Scheme New MOOSE Mesh

Tools K-Effective

Argonne’s Mesh

Tools K-Effective

K-Effective

Difference (pcm)

Direct DFEM-SN 1.17139 1.17119 20

Figure 9-12. Zoomed top-down view of background region between outermost pins and duct for

LFR heterogeneous assembly model, generated by Argonne’s Mesh Tools (left) and new MOOSE

mesh tools (right)

9.2.3 Extension of New MOOSE Meshing Capabilities to LFR Problem with Coarse Mesh
Diffusion Acceleration

A further extension of the new MOOSE meshing capabilities is to define the coarse mesh layout

for neutronics diffusion acceleration schemes. Instead of importing a separate mesh to use for

diffusion acceleration, the new MOOSE mesh generator framework allows for the coarse mesh to

be defined directly in the [Mesh] block of the diffusion acceleration input. Figure 9-13 depicts the

fine and coarse mesh constructed by the new MOOSE mesh generators for the LFR problem that

are then passed to Griffin in order to solve full neutronics transport with diffusion acceleration.

The procedure for coarse mesh input generation mirrors that of the fine mesh input generation

described in Section 9.2.1. However, the coarse mesh is homogenized over each hexagonal pin

region, so the pin definition described in step 1 of Section 9.2.1 is modified to reflect this change.

Moreover, given the irregularity of the background discretization of the outermost pins, the coarse

mesh in this region is homogenized over each pincell while keeping background discretization

identical to that of the fine mesh. The pin definitions for the coarse mesh LFR problem are given

in Figure 9-14, where innerpin defines the homogenized hexagonal region for all inner pins, while

outerpin defines the homogenized pincell with discretized background region representing the

pincells in the outermost ring. Once again, the block ids are selected so as to match the block ids

from the analogous coarse mesh defined by Argonne’s Mesh Tools.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 73 ANL/NSE-21/43

Figure 9-13. Zoomed top-down view of fine-mesh LFR heterogeneous assembly (left) and coarse-

mesh LFR heterogeneous assembly (right), generated by new MOOSE mesh tools (right)

[innerpin001]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # must be six to use hex pattern
 num_sectors_per_side = '2 2 2 2 2 2'
 polygon_size = 0.67125
 background_intervals = 1
 background_block_ids = 1
[]
... # Repeat for all other inner pins

[outerpin001]
 type = PolygonConcentricCircleMeshGenerator
 num_sides = 6 # must be six to use hex pattern
 num_sectors_per_side = '2 2 2 2 2 2'
 polygon_size = 0.67125
 ring_radii = '0.5404'
 ring_intervals = '1'
 ring_block_ids = '2'
 background_intervals = 1
 background_block_ids = 3
 preserve_volumes = on
[]
... # Repeat for all other outer pins

Figure 9-14. Coarse Mesh LFR 2-D Pin Definition Using

PolygonConcentricCircleMeshGenerator

Currently, Griffin offers multiple approaches for diffusion acceleration: Nonlinear Diffusion

Acceleration (NDA), NDA with Diffusion Synthetic Acceleration (DSA) stabilizing scheme, and

Coarse Mesh Finite Differences (CMFD) acceleration NDA is a generalized form of the CMFD

acceleration scheme, while DSA is a linearized form of NDA (Lee, et al., 2021). The CMFD

implementation in Griffin is relatively new and was not explored in this example. All acceleration

schemes require a coarse mesh to be defined, which must completely contain all elements in the

fine mesh. Both Argonne’s Mesh Tools and the new MOOSE mesh tools are used to define the

coarse mesh for the NDA approach, and Table 9-4 summarizes the k-effective results for Griffin

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 74

simulations with and diffusion acceleration. The results in first row are identical to those found in

Table 9-3 and represent the case without diffusion acceleration, while the second row aggregates

the results when the NDA diffusion acceleration scheme is used. Consistent eigenvalues were

obtained for the direct and diffusion-accelerated solvers. More importantly, for a given Griffin

solver scheme, a roughly 20pcm difference when the new MOOSE mesh tools framework is used

over Argonne’s Mesh Tools framework for fine and coarse mesh generation. Once again, this minor

difference is due to the variation in the discretization schemes employed by these frameworks in

the background region between the outermost pins and the duct regions. However, these results

demonstrate close agreement in neutronics results between meshes generated by new MOOSE

mesh tools and other mesh generation frameworks such as Argonne’s Mesh Tools.

Table 9-4. Griffin k-effective results between new MOOSE mesh tools and Argonne’s Mesh

Tools for the LFR Assembly Problem with Coarse Mesh Diffusion Acceleration

Griffin Solver Scheme New MOOSE Mesh

Tools K-Effective

Argonne’s Mesh

Tools K-Effective

K-Effective

Difference (pcm)

Direct DFEM-SN 1.17139 1.17119 20

DFEM-SN with NDA

Diffusion Acceleration

1.17142 1.17122 20

9.3 MOOSE Tensor Mechanics Verification: Ducted Hexagonal Assembly Example

To demonstrate applicability to other physics codes, a hollow ducted hexagonal assembly (with

load pads) mesh was generated for use in a structural mechanics verification problem using

MOOSE Tensor Mechanics (analyzed graciously by N. Wozniak at Argonne National Laboratory).

The benchmark problem comes from IAEA Verification Problem 1 (VP1) from the working group

for the verification and validation of Liquid Metal Fast Breeder Reactor (LMFBR) analysis codes

organized by The International Atomic Energy Agency (IAEA) called the International Working

Group on Fast Reactors (IWGFR). The coordinated work was performed by eleven participating

agencies in nine different countries (Verification and Validation of LMFBR Static Core Mechanics

Codes Part I, 1990).

This IAEA VP1 example examines the free (unrestrained) thermal bowed deformation of a single,

hexagonal assembly with above core load pad (ACLP). The assembly is 4000 mm in height and is

fixed in position at the bottom. The active core region extends from z=1500 to z=2500 mm, and

the load pad extends from z=2950 to 3050 mm. A cross section of the assembly geometry is shown

in Figure 9-15 which depicts the duct flat-to-flat (D = 132.9 mm) and the load pad flat-to-flat (DACLP

= 138.4 mm). The assembly duct wall thickness is 3 mm. While the load pad modeling is not critical

for IAEA VP1, later IAEA verification problems indeed rely on explicit load pad modeling to

simulate contact, and therefore the load pad was modeled here as specified in the benchmark

problem.

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 75 ANL/NSE-21/43

Figure 9-15. Geometry for hexagonal ducted assembly: (left) 2D cross section at load pad, and

(right) vertical cross section showing location of load pad and active core.

In this verification problem, a linearly varying thermal gradient is applied along the axial direction

in the active core region, shown in Figure 9-16. Below the core, all the duct corners have the same

temperature of 400°C (752°F). The duct temperature from core inlet to core outlet varies linearly

to 550°C (1022°F) at Corner 4, 537.5°C (999.5°F) at Corners 3 and 5, 512.5°C (954°F) at Corners

2 and 6, and 500°C (932°F) at Corner 1; the temperature remains at these constant temperatures

from the core outlet to the top of the duct, shown in Figure 9-17.

Figure 9-16. Schematic showing the thermal gradient developed axially along the core region of

the duct, showing the temperature difference for different corners of the duct.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 76

Figure 9-17. Maximum corner temperatures at the top of the core region

9.3.1 Ducted Assembly Mesh Generation with MOOSE

The mesh for this problem was created using a combination of several MOOSE mesh generators,

including the recently developed PolygonConcentricCircleMeshGenerator, as well as

BlockDeletionGenerator, MeshExtruderGenerator, TransformGenerator, and

CombinerGenerator. The detailed mesh generation process is shown graphically in Figure 9-18.

The following steps were taken to generate the ducted hexagonal assembly mesh:

1. Generate a hexagonal 2D pin-cell structure for the assembly duct cladding using
PolygonConcentricCircleMeshGenerator

2. Remove the inside mesh and keep the duct mesh using BlockDeletionGenerator

3. Extrude the duct mesh using either MeshExtruderGenerator or FancyExtruderGenerator

4. Generate a hexagonal 2D pin-cell structure for the load pad using
PolygonConcentricCircleMeshGenerator

5. Remove the inside mesh and keep the load pad mesh using BlockDeletionGenerator

6. Extrude the loading pad duct mesh using either MeshExtruderGenerator or
FancyExtruderGenerator

7. Move the load pad duct mesh along axial direction (z axis) to the needed location, using
TransformGenerator

8. Combine or connect the cladding and loading pad duct meshes using CombinerGenerator (when

connection is not needed, and cladding and loading pad duct meshes are standalone) or

StitchedMeshGenerator (when connection is needed)

9. Utilize RenameBoundaryGenerator to rename sideset faces (optional, but convenient for user to

rename as “face1”, etc rather than a numeric value).

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 77 ANL/NSE-21/43

Figure 9-18 Ducted hexagonal assembly mesh generation

The following figures compare the ducted hexagonal assembly meshes generated by Cubit and

MOOSE. The MOOSE mesh contains more elements radially (a user choice).

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 78

Figure 9-19 Ducted hexagonal assembly meshes: (a) mesh generated by Cubit; and (b) mesh

generated by MOOSE

Figure 9-20. Ducted hexagonal assembly mesh cross section at load pad elevation, (left)

generated by Cubit, and (right) generated by MOOSE

We note that there may be other ways of building this mesh within MOOSE but the final mesh must

contain the appropriate sidesets (one per face of the hexagon so that temperature can be applied).

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 79 ANL/NSE-21/43

9.3.2 Comparison of Results using MOOSE vs. Cubit meshes

The temperature distribution was prescribed on each outside face of the hexagonal cross-section.

The calculated displacements are shown in Figure 9-21. The view presented in the figure is along

the (6-5) face view from Figure 9-17, which has a maximum temperature on the right side (positive

x axis) of 550°C and a minimum temperature on the left side (negative x axis). This tends to bow

the duct from right to left in the positive Y direction. The comparison of the centerline deflection

curves is provided in Figure 9-22 with error percentages provided in Table 9-5 for deflection values

at the top of the core region, the ACLP midplane, and the TLP midplane locations.

Figure 9-21. Cubit mesh displacement in m (left), and MOOSE displacement in m (right).

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 80

Figure 9-22. Duct thermal deflection displacement (Cubit and MOOSE meshes)

The table below summarizes the deflection calculations at the top of the core region, the ACLP

midplane, and the TLP midplane. Excellent agreement between the different mesh methods is

observed at each location with a maximum difference of 0.08% at the TLP. Collectively, these

results indicate that the MOOSE hex mesh generator can accurately mesh a hexagonal thin-walled

duct with load pads for a more efficient workflow than using Cubit.

Table 9-5. Comparison of centerline deflection results between the Cubit mesh and the MOOSE

hex mesh generator, at the top of the core region, the ACLP and TLP midplanes

 Cubit (mm) MOOSE (mm) Difference (%)

Core Top 1.00 1.00 0.0

ACLP midplane 3.25 3.25 0.0

TLP midplane 12.26 12.27 0.08

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 81 ANL/NSE-21/43

9.4 Multiphysics Verification: Microreactor Example

Microreactor concepts have received significant attention in the United States due to the unique

features of lower capital investment, siting flexibility and high mobility. Under NEAMS, an on-

going effort to demonstrate microreactor multiphysics simulation capabilities by coupling multiple

MOOSE based codes BISON (fuel performance analysis) Griffin (neutronics), Sockeye (heat pipe

analysis), and SAM (system analysis) is underway (Stauff, et al., 2021). Cubit was originally

employed to generate the full core mesh. Cubit is a powerful software toolkit for 2D and 3D mesh

generations, with a comprehensive set of meshing schemes. Cubit users can generate and visualize

complex meshes with high flexibility. However, Cubit does not provide a template or scripts to

generate reactor geometries. Users are required to start from drawing circles (for fuel

pellets/pins/claddings) and squares/hexagons (for pin cells/assemblies) one by one, followed by

extrusion of 2D structures to 3D, and defining massive numbers of blocks and boundaries at the

end. The mesh generation process can be extremely time consuming. For an inexperienced Cubit

user, any change in reactor structure may induce substantial efforts on mesh re-generation.

Moreover, the intrinsic meshing schemes in Cubit do not support volume preservation, which can

cost additional effort for the users to tune the circular structures in order to preserve their volumes.

9.4.1 Microreactor Core Mesh Generation with MOOSE Mesh Generators

In the microreactor core example taken from the NEAMS Microreactor analysis activity, typical

heat pipe micro-reactor components including control drums, reflectors, graphite monolith, heat

pipes, moderators, fuel, and air gaps within the reactor were modeled. Figure 9-23(a), (b) and (c)

shows the 1/6 symmetric core mesh generated by Cubit and used in that analysis.

With the newly developed mesh generators, MOOSE is now capable of generating the full core

microreactor mesh analogous to the one generated by Cubit. Figure 9-23(d), (e) and (f) show the

1/6 symmetric core mesh generated by MOOSE. All the microreactor components in the Cubit

mesh were reproduced and meshed. Details of the mesh generation process are shown graphically

in Figure 9-24, Figure 9-25, and Figure 9-26. The following steps were taken to generate the 1/6

symmetric core mesh:

1. Generate hexagonal 2D pin-cell structures, including moderator (Mod_hex), heat pipe (HP_hex)

and fuel (Fuel_hex), using PolygonConcentricCircleMeshGenerator (Figure 9-24)

2. Stitch pin-cell structures generated in step 1 together to produce an assembly using

PatternedHexMeshGenerator (Figure 9-24)

3. Generate hexagonal 2D pin-cell structures, including control drums, reflectors, dummy, and air

center block, using HexagonConcentricCircleAdaptiveBoundaryMeshGenerator and

AzimuthalBlockIDMeshGenerator. Noted that AzimuthalBlockIDMeshGenerator is only

needed for generating control drum mesh (Figure 9-25)
4. Assemble pin-cell structures generated in step 3 and the assembly mesh generated in step 2 into

the core mesh using PatternedHexMeshGenerator (Figure 9-25)

5. Remove the dummy blocks and slice the 2D full core mesh into 1/6 symmetric core mesh using

BlockDeletionGenerator assisted with ParsedSubdomainMeshGenerator (Figure 9-26)

6. Extrude the 2D 1/6 symmetric core mesh to 3D using either MeshExtruderGenerator or

FancyMeshExtruderGenerator (Figure 9-26)

7. Define the top and bottom reflector using ParsedSubdomainMeshGenerator (Figure 9-26)

8. Generate and rename sidesets using SideSetsBetweenSubdomainsGenerator and
RenameBoundaryGenerator.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 82

 Figure 9-23. Microreactor core meshes produced by CUBIT (number of nodes: 1.7 × 106): (a)

1/6 symmetric core mesh, (b) cross-section of the core, and (c) zoom-in region of (b); and

MOOSE mesh generators (number of nodes: 1.0 × 106): (d) 1/6 symmetric core full core mesh,

(e) cross-section of the core, and (f) zoom-in region of (e)

Figure 9-24. 2D assembly mesh generation showing moderator, heat pipe, and fuel pin cell being

combined into a hexagonal pattern

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 83 ANL/NSE-21/43

Figure 9-25. 2D core mesh generation showing assemblies (fuel, control drum, reflector, dummy)

being combined into a core

Figure 9-26. 3D 1/6 symmetric core mesh generation: (a) 2D core mesh; (b) trimmed (dummy

blocks removal) and sliced 2D 1/6 symmetric core mesh; (c) extruded 3D 1/6 symmetric core

mesh; and (d) completed 3D 1/6 symmetric core mesh after defining axial blocks

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 84

Two simulations were conducted to examine the performance of 3D 1/6 symmetric core mesh

generated by MOOSE mesh generators in comparison to that generated by Cubit: (1) a heat

conduction simulation using BISON, and (2) a multiphysics simulation with coupling BISON-

Griffin-Sockeye.

9.4.2 BISON Heat-Conduction Simulation with MOOSE mesh

The first simulation is a simple heat conduction problem with no input power. The core was

simulated to establish a “steady-state” which is also the starting status of the multiphysics

simulation. The temperature of the core at the initial state was 300K uniformly. Without input

power, the temperature distribution relies on the boundary conditions: the heat pipe surfaces with

Text =800K are the only heat sources, and external surfaces (including top, bottom and outer surfaces

of reflector, and top surface of helium gap) with Text =300K become the heat sink.

Figure 9-27 shows the temperature distribution of 1/6 symmetric core at the last time step (20 sec)

of simulation. Similar temperature distributions were developed using the meshes generated by

Cubit and MOOSE mesh generators. Temperature evolutions of fuel and heat pipe surfaces are

selected to compare computations with the meshes generated by Cubit and MOOSE mesh

generators (Figure 9-28). As seen, the difference in temperature evolutions is negligible, indicating

both meshes are reliable in the heat conduction simulation.

Figure 9-27. Temperature distribution of the 1/6 symmetric core at the last time step (20 sec) of

simulation: (a) simulation based on the mesh generated by CUBIT (b) simulation based on the

mesh generated by meshgenerators

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 85 ANL/NSE-21/43

 Figure 9-28. Temperature evolution of the heat conduction simulation: (a) average fuel

temperature, and (b) average heat pipe surface temperature

Figure 9-29. Power density comparison of multiphysics simulations using the two different

meshes (unit: W/m3).

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 86

9.4.3 Griffin-BISON-Sockeye Multiphysics Simulations

The consistency between the CUBIT generated mesh and MOOSE generated mesh was further

investigated using a Multiphysics approach. The Multiphysics simulation was performed by

coupling three MOOSE applications: Griffin, BISON and Sockeye. Here, Griffin was used as the

main application that performs steady state eigenvalue calculation using the generated 3D core

meshes and diffusion theory. The main application is coupled with a BISON sub-application using

the same meshes through Picard iteration. The Griffin main application provides power density

distribution to the BISON sub-application and gets fuel temperature profile back during each

iteration. Additionally, for each single heat pipe, the BISON sub-application has its own second-

level Sockeye sub-application to simulate the heat pipe cooling performance. The power density

and temperature profile at the steady state predicted by the Griffin-BISON-Sockeye approach using

the two meshes are illustrated in Figure 9-29 and Figure 9-30, respectively. Use of Cubit and

MOOSE meshes produced consistent power and temperature prediction.

Figure 9-30. Temperature comparison of Multiphysics simulations using the two different meshes

(unit: K).

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 87 ANL/NSE-21/43

Table 9-6. Key calculated parameters comparison between the two meshes (temperature unit: K)

CUBIT MOOSE

𝒌𝒆𝒇𝒇 0.93078 0.93165

𝑻𝒎𝒂𝒙
𝒇𝒖𝒆𝒍

 982.50 987.62

𝑻𝒂𝒗𝒈
𝒇𝒖𝒆𝒍

 873.07 874.01

𝑻𝒎𝒊𝒏
𝒇𝒖𝒆𝒍

 804.41 804.53

𝑻𝒎𝒂𝒙
𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒐𝒓 971.59 975.58

𝑻𝒂𝒗𝒈
𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒐𝒓 870.92 871.89

𝑻𝒎𝒊𝒏
𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒐𝒓 806.11 806.34

𝑻𝒎𝒂𝒙
𝒎𝒐𝒏𝒐𝒍𝒊𝒕𝒉 978.38 983.18

𝑻𝒂𝒗𝒈
𝒎𝒐𝒏𝒐𝒍𝒊𝒕𝒉 866.66 867.64

𝑻𝒎𝒊𝒏
𝒎𝒐𝒏𝒐𝒍𝒊𝒕𝒉 803.62 803.79

A more specific comparison is made in Table 9-6. The eigenvalue differs by less than 100 pcm by

using the Cubit mesh and MOOSE mesh. The temperature difference is usually lower than 5 K for

different components of the reactor core. This is excellent agreement considering that the Cubit and

MOOSE meshes have vastly different discretization (owing to the “pave” algorithm in Cubit which

is not easily controlled by the user). The run-time for the simulation using Cubit mesh is greater

than that using MOOSE mesh due to the difference in mesh density (Figure 9-23).

9.5 Summary of Physics Tests

Verification tests performed with Griffin, MOOSE Tensor Mechanics, BISON, and coupled

Griffin-Bison-Sockeye simulations demonstrate that the newly developed mesh tools provide

consistent physics solutions compared to similar meshes generated outside MOOSE. Minor

differences were observed and are expected since the meshes tested were not exactly identical.

The new MOOSE meshing tools offer improved user workflow by avoiding the use of external

tools and being able to access and control mesh data more easily to facilitate physics inputs. In

particular, avoiding CUBIT is ideal since this tool has a steep learning curve and also does not have

the capability to preserve volume (meshed volume may not equal geometrical volume) in

cylindrical fuel pins and absorber regions. Cubit meshes therefore must be used in conjunction with

a density correction in the physics code which can be tedious to perform. The MOOSE tools used

to generate pin cells conserve circular/cylindrical volumes automatically unless the user overrides

this option. Use of MOOSE meshing tools can also mesh the geometry more optimally than Cubit

for certain geometries and result in a fewer nodes and lower computational time.

The new tools offer flexibility in defining core layout, block id assignment in 3D extrusion, and

they allow boundary sidesets to be named descriptively instead of arbitrary sideset ids. Mesh

sensitivity analysis can be done directly by changing input file directly instead of having to re-

generate Exodus file through external mesh tools for each mesh adjustment under consideration. In

fact, the Stochastic Tools Module of MOOSE can also access and perturb mesh parameters which

permits additional parameterization studies which were previously not possible with an external

mesh. Finally, coarse meshes can be defined directly instead of having to import separate exodus

mesh files from an external program.

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 88

10 Summary

A series of new MOOSE mesh generators have been developed to support advanced reactor

geometry meshing needs. The new mesh generators support five primary priorities:

1. Hexagonal geometry meshing capability including pin cells, ducted assemblies, and cores

2. Control drum geometry meshing capability including static and rotating absorber

3. Reporting ID capability, i.e., implementation of element-wise mesh information for regular

Cartesian and hexagonal geometries, to identify specific reactor features/zones

4. Core periphery meshing capability

5. Reactor Geometry Mesh Builder (RGMB) capability that employs reactor analyst input

language to build up 3D Cartesian or hexagonal heterogeneous reactor cores more

intuitively including material assignment

The first two sets of mesh generators have been tested using Griffin, MOOSE Tensor Mechanics,

BISON, and coupled Griffin-Bison-Sockeye simulations on a variety of fast reactor and

microreactor problems. Solutions compared well to previous results which relied on external

meshing software, demonstrating that the MOOSE-based meshes are performing correctly.

At time of this report writing, the mesh generators are in the process of being integrated into the

MOOSE framework and are expected to be available to the general user within the “reactor” module

by late 2021.

Several areas of future work are proposed to continue enhancing MOOSE’s native meshing

capability for NEAMS users. Some priorities are listed here, although this list is not exhaustive.

• Physics verification and output testing of capabilities 3, 4 and 5, as well as the transient

control drum capability in 2

• Enable proper modifications on the elements of the outmost layer of the hexagon meshes

so that meshes with different numbers of nodes on the external boundaries can be stitched

together after such modifications.

• Enable a single meshing input block for meshes required for all levels of MultiApps system.

For example, for a Griffin-BISON Multiphysics simulation, a coarse and gap-free mesh can

be generated for Griffin, and a finer mesh with more component details can be generated

for BISON using a single mesh generator block.

• Rearrange node positions near a specified plane or surface to prepare a mesh for clipping.

• Addition of refinement algorithm to TriangulatedMeshGenerator to improve quality of

triangulated triangles

• Extend outer boundary of TriangulatedMeshGenerator to additional shapes besides

circle, set of points (e.g., from external program), and/or boundary of existing

meshgenerator mesh (if core periphery is part of another mesh)

• Improve the mesh generators which define sidesets/boundary names and IDs, such as

SideSetsFromPointsGenerator and SideSetsFromNormalsGenerator to allow

selections of specific blocks by users

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 89 ANL/NSE-21/43

• Auto-generate sideset IDs during 3-D extrusion based on number of unique id’s in 2D map

• Develop consistent naming and numbering convention for sidesets and boundaries to avoid

conflicts between mesh generators

• Development of a MOOSE native Delaunay triangulation routine

• Additional testing is needed of control drum routines, reporting_id,

TriangleMeshGenerator and the RGMB mesh generators that were developed

• Implement a coarse mesh generation capability based on mesh meta data and reporting

IDs to support a coarse mesh based acceleration technique.

• Add additionally functionality to RGMB (Cartesian ducts, ability to create a control drum

object, ability to auto-collapse blocks, enhanced sideset control)

 MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

ANL/NSE-21/43 90

REFERENCES

Apache License. (2021). Apache License, Version 2.0. Retrieved from Open Source Initiative:

https://opensource.org/licenses/Apache-2.0

BSD License. (2021). The 3-Clause BSD License. Retrieved from Open Source Initiative:

https://opensource.org/licenses/BSD-3-Clause

CUBIT. (2021). Retrieved from The CUBIT Geometry & Meshing Toolkit:

https://cubit.sandia.gov/

Gaston, D., Permann, C., Peterson, J., Slaughter, A., Andrs, D., Wang, Y., . . . Martineau, R. (2015).

Physics-based multiscale coupling for full core nuclear reactor simulation. Annals of

Nuclear Energy, 84, 45-54.

Geuzaine, C., & Remacle, J.-F. (2021). Gmsh - A three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities. Retrieved from https://gmsh.info/

GPL License. (2021). GNU General Public License v3. Retrieved from Open Source Initiative:

https://opensource.org/licenses/GPL-3.0

Grasso, G., Levinsky, A., Franceschini, F., & Ferroni, P. (2019). A MOX-fuel core configuration

for the Westinghouse Lead Fast Reactor. ICAPP - International Congress on Advances in

Nuclear Power Plants. France.

Hasse, J. N. (2021). poly2tri. Retrieved from GitHub: https://github.com/jhasse/poly2tri

Jung, Y., Lee, C., & Smith, M. (2018). PROTEUS-MOC User Manual. Argonne, IL: ANL/NSE-

18/10, Argonne National Laboratory. doi:10.2172/1483947

Lee, C., Jung, Y., Park, H., Shemon, E., Ortensi, J., Wang, Y., . . . Prince, Z. (2021). Griffin

Software Development Plan. INL/EXT-21-63185 & ANL/NSE-21/23, Idaho National

Laboratory and Argonne National Lab Technical Report.

LGPL License. (2021). GNU Lesser General Public License v3. Retrieved from Open Source

Initiative: https://opensource.org/licenses/LGPL-3.0

MIT License. (2021). The MIT License. Retrieved from Open Source Initiative:

https://opensource.org/licenses/MIT

Permann, C., Gaston, D., Andrs, D., Stogner, R., Carlsen, R., Kong, F., . . . Martineau, R. (2020).

MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 11(2352-7110),

100430. doi:https://doi.org/10.1016/j.softx.2020.100430

Shemon, E. R., Grudzinski, J. J., Lee, C. H., Thomas, J. W., & Yu, Y. Q. (2015). Specification of

the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem.

Argonne, IL: ANL/NE-15/43, Argonne National Laboratory.

Shemon, E., Smith, M., & Lee, C. (2016). PROTEUS-SN User Manual. Argonne, IL: ANL/NE-

14/6 (Rev 3.0), Argonne National Laboratory. doi:10.2172/1240157

Shemon, E., Yu, Y., & Kim, T. (2020). Demonstration of NEAMS Multiphysics Tools for Fast

Reactor Applications. Argonne, IL: ANL/NSE-20/25, Argonne National Laboratory.

Shewchuk, J. R. (2021). Triangle - A Two-Dimensional Quality Mesh Generator and Delaunay

Triangulator. Retrieved from https://www.cs.cmu.edu/~quake/triangle.html

Smith, M., & Shemon, E. (2015). User Manual for the PROTEUS Mesh Tools. Argonne, IL:

ANL/NE-15/17 Rev. 1.0, Argonne National Laboratory. doi:10.2172/1212714

MOOSE Framework Meshing Enhancements to Support Reactor Physics Analysis
September 15, 2021

 91 ANL/NSE-21/43

Stanek, C. (2019). Overview of DOE-NE NEAMS Program. Los Alamos, NM: LA-UR-19-22247,

Los Alamos National Laboratory. doi:https://doi.org/10.2172/1501761

Stauff, N., Mo, K., Cao, Y., Thomas, J., Miao, Y., Lee, C., . . . Feng, B. (2021). Preliminary

Applications of NEAMS Codes for Multiphysics Modeling of a Heat Pipe Microreactor.

ANS Transactions. 124, pp. 21-24. American Nuclear Society.

TetGen. (2021). TetGen - A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator.

Retrieved from https://wias-berlin.de/software/index.jsp?id=TetGen

VERA. (2021). Retrieved from The Virtual Environment for Reactor Applications:

https://vera.ornl.gov/

(1990). Verification and Validation of LMFBR Static Core Mechanics Codes Part I. Vienna,

Austria: IWGFR/75, International Atomic Energy Agency.

Williamson, R., Hales, J., Novascone, S., Pastore, G., Gamble, K., Spencer, B., . . . Chen, H. (2021).

BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear

Fuel Forms. Nuclear Technology, 207(7), 954-980.

doi:doi.org/10.1080/00295450.2020.1836940

Nuclear Science and Engineering Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 208

Argonne, IL 60439

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

http://www.anl.gov/

